Introduction to Cosmology

Lecture 2: Distances in the universe

Plan
1. The horizon problem

2. Luminosity and angular distances
3. Dynamics of the scale factor

4. Friedmann equation
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1. The horizon problem

Redshift of a far away galaxy well-defined, but not its distance.
We need a(t)! Use preceding explicit model for a(t)

Far away in distance means far away in time. Photon emitted
by far away galaxy at time ¢, received by us at time t = {1,

comoving distance
to dt,
dcom — C/ ,
. a(t)

Use redshift z as integration variable

dt dz
-7 —3/2
o " m, T
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(Within the specific model!). Then distance d (note a(ty) = 1)

d = a(ty)deom(2) = ca(to) /: dz(1 + 2)~3/?

- [1—(1+2)"?]

Photon emitted at the Big Bang, z — oo, defines the particle
horizon or simply horizon

dh0r<t0) = 26/[‘]0

to be contrasted with naive estimate dyo,(tg) = ¢/ Hy.
Horizon of a galaxy at 2
2¢ 1/

Tcom(z) — FO (1 _l_z)
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Figure 1: Horizons at z = 0 (red) and z = Z (blue), horizontal units
c/Hy. Horizon = infinite redshift.
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Comoving scales within horizon today beyond horizon at z

Actually we cannot receive photons emitted at ¢ = 0, universe
opaque to photons until their decoupling at t = t4e. >~ 380 000
years after the Big Bang. Best estimates of horizon with more
realistic model

3
dior(to) = 3 cty = = ~ 45 billions 1 — y
Hy

The horizon problem. Photons decouple at
Zdee = a(tg)/a(tqec) =~ 1100

The horizon at t = tqec is ™~ cHy H(1 + zgee) "2, s0 seen by us
under an angle angle

0~ (1+ zdec)_l/2 ~ 1 degree
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surface de derniere diffusion

Figure 2: The horizon problem. Photons emitted at wavelength A ~
1.7 um (infrared) and received at A >~ 1.9 mm (microwave). Surface of
last scattering = effective limit of observable universe
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2. Luminosity distance and angular distance

The flux-luminosity formula needs a modification. Define d.g
from Hux-luminosity formula. But

1. Measured photon frequency vy, and hence energy E. =
2mhy smaller than emitted frequency v, because of cos-
mological redshift

Ve

(14 2)

2. Interval At, between emission times of two photons larger
than interval between reception times

At() — Ate(l + Z)

Vo =—

Luminosity distance dj,
f 1 1 1

L~ Ard?, (1+2)2  Ard?
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Figure 3: The flux-luminosity relation in a two-dimensional space-time
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Angular distance d4. Photon propagation at constant (6, v).
Object size AL, emission at comoving distance r..,, seen un-

der angle Af
AL = a(t)rcomAb

The angle A6 does not vary
AL  AL(1+z) AL

CL(t)Tcom a(tO)rcom B a

Al =

Relation between d; and dgy

da = a(to)Teom(1 + z)_l =dr(1+ z)_2

If space is curved, for the same angular aperture A6

ALcurv.>0 < ALcurv.:O < ALcurv.<0
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Figure 4: Distances in a curved space
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Distance concept ambiguous: depends on the definition and
of the expansion of the universe. No universal definition of
distance. Use the redshift z!

3. Dynamics of the scale factor

Simple energetic considerations. Universe = ideal fluid of

galaxies, no heat transfer, no entropy creation. Standard ther-
modynamic relation d& = T1'dS — PdV

SE = —P§V

In general 0 > 0 when 0V <0 asP >0
If )FE > 0 when 0V > 0, then P < 0!
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Figure 5: Fluid compression
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E increases when V decreases if P > 0. V.., covolume con-
taining fixed number of galaxies V' (¢) = a*(t) Veom

5 [p(1)a” (1) AVeom] = ~P(1) 6 [0 (1) AVzon]

so that
d

(ol (t)] = —P(t) < [*(1)]
There limiting cases

1. Matter dominated universe. Pression negligible w.r.t.
mass energy

pt)a’(t) =cst  or  p(t) = p(to)(1 + z)’
Emnergy density X volume = constant

2. Radiation dominated universe. Then (black body radi-
ation) P = p/3 and p o< T, valid for any gas of ultra-
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relativistic particles

Elp(t)a*(1)] = 0

Since p o< T* scale factor a(t) o< 1/T

o ] — plto)(1 4 2
a(to)
a(t)

CMB temperature ~ 3 K, decoupling temperature ~ 3000 K,
Zdec ™ 103

T(t) = T(tO)[ ]:T(to)(lJrz)

. Universe dominated by dark energy Assumption: dark
energy = vacuum energy, density p, time independent,
no dilution, so that P = —p, Unfortunately QFT gives
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10*° time the observed density. Other possibility: cos-
mological constant

Friedmann equation

From Einstein equation, using T* for a pertect fluid

B dzH

" = (P + p)uru, — P*, uH = —
dr

Proof: fluid rest frame.
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Using general metric, with possible space curvature

a(t)\> 8x kc?
(@> ey Gp(t) = R (D k=1,0,-1

R = radius of curvature, k& = +1: positive curvature, k = 0:

flat space (R — o0), k = —1 negative curvature. Critical
density
__ 3H;
PO = Pc = e

1. pg < p.: open universe, expansion does not stop
2. pg = p.: open universe, expansion does not stop
3. po > pe: closed universe, expansion stops and Big Crunch

However does not tell anything on the topology of space!

0-15



However strict connection between density and fate of the
universe valid only if p, =0

One usually defines the ratios at t = ¢

Qm _ Pmo er _ Pro Qv _ Pv0
Pc Pc Pc

and €2, + €. + €, = 1 for a flat universe. Time derivative of
Friedmann equation multiplied by a?

4 a’ 8

i— — Gp— — — Gpa =0
YTy Py Ty
so that ) 1o
a 708
—:——3
. ; (3P + p)

i < 01if (3P + p) > 0. Acceleration of expansion implies
negative pressures! Limiting cases
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1. Matter dominated universe: €2, = 1,0, = Q, = 0.
a(t) oc 23, tg = 2/(3H,).

2. Radiation dominated universe: 2, = €, = 0,9, = 1.
Then a(t) o< t'/? At sufficiently early times, universe ra-
diation dominated.

3. Vacuum dominated universe: €2,, = €, = 0,9, = 1.
Then
a(t) = a(ty) et

At late enough times, universe dominated by vacuum
energy.

Parameters from Planck
), ~0.3, Q,~0.7, Q,~0

Matter and radiation roughly equivalent for z ~ 3000. Matter
and vacuum energy roughly equivalent for ¢t ~ 7 x 10” years
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t (10Y années)

20

Figure 6: A semi-realistic graph for a(t)
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