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1. The horizon problem

Redshift of a far away galaxy well-defined, but not its distance.
We need a(t)! Use preceding explicit model for a(t)

Far away in distance means far away in time. Photon emitted
by far away galaxy at time t, received by us at time t = t0,
comoving distance

dcom = c

∫ t0

t

dt′

a(t′)

Use redshift z as integration variable

dt

a(t)
=

dz

H0
(1 + z)−3/2
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(Within the specific model!). Then distance d (note a(t0) = 1)

d = a(t0)dcom(z) =
ca(t0)

H0

∫ z

1

dz(1 + z)−3/2

=
2ca(t0)

H0

[

1 − (1 + z)−1/2
]

Photon emitted at the Big Bang, z → ∞, defines the particle
horizon or simply horizon

dhor(t0) = 2c/H0

to be contrasted with naive estimate dhor(t0) = c/H0.

Horizon of a galaxy at z

rcom(z) =
2c

H0
(1 + z)−1/2
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Figure 1: Horizons at z = 0 (red) and z = z (blue), horizontal units
c/H0. Horizon = infinite redshift.
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Comoving scales within horizon today beyond horizon at z

Actually we cannot receive photons emitted at t = 0, universe
opaque to photons until their decoupling at t = tdec ≃ 380 000
years after the Big Bang. Best estimates of horizon with more
realistic model

dhor(t0) ≃ 3 ct0 ≃
3c

H0

≃ 45 billions l − y

The horizon problem. Photons decouple at

zdec = a(t0)/a(tdec) ≃ 1 100

The horizon at t = tdec is ≃ cH−1
0 (1 + zdec)

−1/2, so seen by us
under an angle angle

θ ≃ (1 + zdec)
−1/2

∼ 1 degree
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Figure 2: The horizon problem. Photons emitted at wavelength λ ≃

1.7 µm (infrared) and received at λ ≃ 1.9 mm (microwave). Surface of
last scattering = effective limit of observable universe
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2. Luminosity distance and angular distance

The flux-luminosity formula needs a modification. Define deff

from flux-luminosity formula. But

1. Measured photon frequency ν0, and hence energy Eγ =
2π~ν smaller than emitted frequency νe because of cos-
mological redshift

ν0 =
νe

(1 + z)

2. Interval ∆te between emission times of two photons larger
than interval between reception times

∆t0 = ∆te(1 + z)

Luminosity distance dL

f

L
=

1

4πd2
eff

1

(1 + z)2
=

1

4πd2
L
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Figure 3: The flux-luminosity relation in a two-dimensional space-time
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Angular distance dA. Photon propagation at constant (θ, ϕ).
Object size ∆L, emission at comoving distance rcom, seen un-
der angle ∆θ

∆L = a(t)rcom∆θ

The angle ∆θ does not vary

∆θ =
∆L

a(t)rcom

=
∆L(1 + z)

a(t0)rcom

=
∆L

dA

Relation between dL and dA

dA = a(t0)rcom(1 + z)−1 = dL(1 + z)−2

If space is curved, for the same angular aperture ∆θ

∆Lcurv.>0 < ∆Lcurv.=0 < ∆Lcurv.<0
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Figure 4: Distances in a curved space
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Distance concept ambiguous: depends on the definition and
of the expansion of the universe. No universal definition of
distance. Use the redshift z!

3. Dynamics of the scale factor

Simple energetic considerations. Universe ≡ ideal fluid of
galaxies, no heat transfer, no entropy creation. Standard ther-
modynamic relation dE = TdS − PdV

δE = −PδV

In general δE > 0 when δV < 0 as P > 0

If δE > 0 when δV > 0, then P < 0!
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Figure 5: Fluid compression
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E increases when V decreases if P > 0. Vcom covolume con-
taining fixed number of galaxies V (t) = a3(t) Vcom

δ
[

ρ(t)a3(t)∆Vcom

]

= −P(t) δ
[

a3(t)∆Vcom

]

so that
d

dt

[

ρ(t)a3(t)
]

= −P(t)
d

dt

[

a3(t)
]

There limiting cases

1. Matter dominated universe. Pression negligible w.r.t.
mass energy

ρ(t)a3(t) = cst or ρ(t) = ρ(t0)(1 + z)3

Energy density × volume = constant

2. Radiation dominated universe. Then (black body radi-
ation) P = ρ/3 and ρ ∝ T 4, valid for any gas of ultra-
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relativistic particles

d

dt
[ρ(t)a4(t)] = 0

Since ρ ∝ T 4 scale factor a(t) ∝ 1/T

ρ(t) = ρ(t0)

[

a(t0)

a(t)

]4

= ρ(t0)(1 + z)4

T (t) = T (t0)

[

a(t0)

a(t)

]

= T (t0)(1 + z)

CMB temperature ∼ 3 K, decoupling temperature ∼ 3000 K,
zdec ∼ 103

3. Universe dominated by dark energy Assumption: dark
energy = vacuum energy, density ρv time independent,
no dilution, so that P = −ρv Unfortunately QFT gives
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10120 time the observed density. Other possibility: cos-
mological constant

Friedmann equation

From Einstein equation, using T µ
ν for a perfect fluid

T µ
ν = (P + ρ)uµuν − Pδµ

ν uµ =
dxµ

dτ

Proof: fluid rest frame.
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Using general metric, with possible space curvature

(

ȧ(t)

a(t)

)2

−
8π

3
Gρ(t) = −

kc2

R2a2(t)
k = 1, 0,−1

R = radius of curvature, k = +1: positive curvature, k = 0:
flat space (R → ∞), k = −1 negative curvature. Critical
density

ρ0 = ρc =
3H2

0

8πG

1. ρ0 < ρc: open universe, expansion does not stop

2. ρ0 = ρc: open universe, expansion does not stop

3. ρ0 > ρc: closed universe, expansion stops and Big Crunch

However does not tell anything on the topology of space!
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However strict connection between density and fate of the
universe valid only if ρv = 0

One usually defines the ratios at t = t0

Ωm =
ρm0

ρc

Ωr =
ρr0

ρc

Ωv =
ρv0

ρc

and Ωm + Ωr + Ωv = 1 for a flat universe. Time derivative of
Friedmann equation multiplied by a2

ä −
4π

3
Gρ̇

a2

ȧ
−

8π

3
Gρa = 0

so that
ä

a
= −

4πG

3
(3P + ρ)

ä < 0 if (3P + ρ) > 0. Acceleration of expansion implies
negative pressures! Limiting cases
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1. Matter dominated universe: Ωm = 1,Ωr = Ωv = 0.
a(t) ∝ t2/3, t0 = 2/(3H0).

2. Radiation dominated universe: Ωm = Ωv = 0,Ωr = 1.
Then a(t) ∝ t1/2 At sufficiently early times, universe ra-
diation dominated.

3. Vacuum dominated universe: Ωm = Ωr = 0,Ωv = 1.
Then

a(t) = a(t0) eH(t−t0)

At late enough times, universe dominated by vacuum
energy.

Parameters from Planck

Ωm ≃ 0.3, Ωv ≃ 0.7, Ωr ≃ 0

Matter and radiation roughly equivalent for z ≃ 3000. Matter
and vacuum energy roughly equivalent for t ≃ 7 × 109 years
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Figure 6: A semi-realistic graph for a(t)
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