Introduction Particle Physics

Marie-Hélène Schune and Achille Stocchi LAL-Orsay Université Paris-Sud and IN2P3/CNRS

- Introduction to Particle Physics (history/interaction/symmetries)
- The strong interaction
- The weak interaction
- Heavy Flavours
- The Standard Model and Higgs
- Heavy Flavours to search for New Physics
- Few open questions

Chapter I

Introduction

Particle Physics

TO

What is particle physics

The particle world

The laws of « this world » are not really intuitive..

$e = 1.602176462(63) 10^{-19} C$ m = 9.10938188(72) 10 ⁻³¹ kg

<u>Particle world is described by quantum field theory</u> It is our main working tool for particles physics It comes from the marriage between <u>quantum mechanics and relativity</u>

The particle world : Physics of the two-infinities

6

The mass

- When $p = 0 \implies E = mc^2$
- When v increases $\Rightarrow E^2$ et p^2c^2 increase but their difference remains constant
- *m* is a Lorentz invariant

Thompson experiment

MICROSCOPIC WORLD

Determination of Determination of the quantum m/e for electrons nature and the value of the electric charge for electrons

Today

- $e = 1.602176462(63) 10^{-19} C$
- m = 9.10938188(72) 10⁻³¹ kg

1 Joule =1Coulomb*1 Volt

1eV = Energy for an electron fealing a potential difference of 1 V 1eV = 1.6 10⁻¹⁹ Joule

 $mc^2 = 9.1 \ 10^{-31} \ kg \times (3 \ 10^8)^2 \ m^2/sec^2 = 50 \ 10^4 \ eV$

$$m_e = 0.5 MeV/c^2 = 0.5 MeV (c=1)$$

 m_p = 938 MeV $\approx 1 \text{ GeV}$

 $1eV/c^2 = 1.78 \ 10^{-36} \ kg$

KeV (10³ eV) MeV (10⁶ eV) GeV(10⁹ eV) TeV (10¹² eV) **I**.2

Anhistorical

introduction

Historical overview

A bit of history

•	1897 (Thompson)	electron discovery		
•	1912 (Rutherford)	proton discovery		
•	~1930 (Pauli/Fermi)	neutrino v _e hypothesis		
	1958 (Reines-Cowan) : experimental evidence			
•	1932 (Chadwick)	neutron discovery		
•	1932 (Anderson)	positron discovery :e+ 1 st antiparticle		
	In the '30s one knows : e ⁻ p n and	v_e the electromagnetic force and the γ		

Framework to try to explain the forces between p, then between p and $n \Rightarrow$ Strong interaction

Observation of unstable particles in cosmic rays + β decays

 \Rightarrow Weak interaction

Many particles :

When the muon was discovered the physicist I. Rabi said :

It remains in fact a very good question.....

• 1955 (Chamberlain, Segre, Wiegand, Ypsilantis) antiproton discovery

1964 Zweig-GellMann-Neeman : theoretical introduction of quarks

.... New particles..

- •1974 (*Richter/Ting*) J/ψ discovery (cc) : c quark
- •1975 (Perl) discovery of the τ lepton
- •1977 (Ledermann) Y discovery (bb bound state) : b quark
- •1995 (CDF/DØ coll.) t quark
- •2000 (Donut) : v_{τ}

<u>Leptons</u> : Any particle which does not undergo the strong interaction (e,μ,τ) (v_e,v_{ν},v_{τ})

Interaction particles

- Classical mechanics : interactions = force field
- Modern physics : interactions = interaction particles which are field quanta

1973 Observation at CERN of the "weak neutral currents" Interactions between neutrinos \rightarrow "Z⁰"?

1976 Standard Model. Electroweak unification $\Rightarrow (Y, Z^0 W^+)$ They are vectors of the weak interaction, their masss are predicted

1983 Observation at CERN of the Z⁰ and W⁺⁻ bosons

1989 « Mass production» of Z⁰ at LEP at CERN

1996 Production of W+W- pairs at LEP at CERN

2012 DISCOVERY OF THE HIGGS BOSON AT LHC (CERN)

Elementary particles

3 families of fermions : matter

+ anti-matter !

3 forces : electromagnetism, weak interaction, strong interaction

And the Higgs boson !

The particles are characterized by :

- their spin
- their mass
- the quantum numbers (charges) determining their interactions

All our knowledge is today « codified » in the **Standard Model** :

Matter, Interaction, Unification Interaction, Unification

The fermions and their masses

3rd family

1st family

2nd family

The interactions and their mediators

Spin 1 particles

1

10-8

m=0

m=0

Strong interaction

Weak interaction

Electromagnetism

Z⁰ Z boson

photon

gluon

91.2 GeV

80.4 GeV

W bosor

m=91.2 GeV

M=80.4 GeV

Gravity : negligible at the scale of elementary particles We do not know today how to quantify it

Anti-matter ?

To each particle one can associate an anti-particle : same mass but all quantum numbers opposite

In 1931 Dirac predicts the existence of a particle similar to the electron but of charge +e

Discovery of the positron

- The radius of curvature is smaller above the plate. The particle is slow down in the lead
 the particle in incoming from the bottom
- The magnetic field direction is known
 → positive charge
- From the density of the drops one can measure the ionizing power of the particle → minimum ionizing particle
- Similar ionizing power before and after the plate
 - \rightarrow same particle on the 2 sides
- Curvature measurement after the lead : particle of ~23MeV

 \rightarrow it is not a non-relativistic proton because he would have lost all its energy after ~5mm (a track of ~5 cm is observed)

Momentum direction

Particle of positive electric charge and with a mass much smaller than the proton mass $(< 20 m_e)$: the **positron**

Anderson 1932

<u>Two important observables :</u> <u>Lifetime/Width : τ/Γ <u>Cross Section : σ </u></u>

Lifetime : τ

Lifetime : the exponential law

Instable particles and nuclei : number of decays per unit of time

 $(\Delta N/\Delta T)$ proportional to the number of particles/nuclei (N)

The probability for a radioactive nucleus to decay during a time interval t, does not depend on the fact that the nucleus has just been produced or exists since a time T :

 $\begin{bmatrix} Survival \text{ probability} \\ after the time T + t \end{bmatrix} = \begin{bmatrix} Survival \text{ probability} \\ after the time T \end{bmatrix} \times \begin{bmatrix} Survival \text{ probability} \\ after the time t \end{bmatrix} e^{a+b} = e^a \times e^b$

Few important examples of different lifetimes

• Stable particles : γ , e, p, $\nu \rightarrow$ the only ones !

proton stability $\tau(p) > \sim 10^{32}$ ans

• particles with long lifetimes :

$$\begin{split} & \mathsf{n} \to \mathsf{p} + \mathsf{e}^{-} + \overline{\nu}_{\mathsf{e}} \\ & \mu^{-} \to \mathsf{e}^{-} + \overline{\nu}_{\mathsf{e}} + \nu_{\mu} \\ & \pi^{+} \! \to \! \mu^{+} \nu_{\mu} \text{ (mainly)} \\ & \mathsf{K}^{+} \end{split}$$

 $τ = 6.13 \ 10^{+2} \text{ sec}, β \text{ decay}$ $τ = 2.2 \ 10^{-6} \text{ sec}, \text{ cosmic rays}$ $τ = 2.6 \ 10^{-8} \text{ sec}$ $τ = 1.2 \ 10^{-8} \text{ sec}$

• particle with short lifetimes :

D+ $\tau = 1.04 \ 10^{-12} \sec$ B+ $\tau = 1.6 \ 10^{-12} \sec$ Δ^{++} \rightarrow N π $\tau \sim 10^{-23} \sec$

particles which can be directly detected

- The lifetimes are given in the particle rest frame
- What we see is the lifetime in the laboratory rest frame
 - \rightarrow one should take into account the relativistic time dilation
 - \rightarrow In real life one measures lengths in the detector

 $L = \frac{\beta \gamma}{Boost} \times \frac{c\tau}{Iifetime}$

- Some particles are seen as stable in the detectors.
- Example a pion ($c\tau = 7.8m$) :

if $E_{\pi} = 20 \text{ GeV} \rightarrow \gamma = 20/m_{\pi} = 142.9$; $\beta = 0.999975$

 \rightarrow L = 1114.3m

« Event display » of the BELLE experiment (e⁺e⁻ → $B\overline{B}$, E_{CM} =10.58 GeV)

particles which can be directly detected in the detector : n, γ ,e, p, μ , π^{\pm} , K[±]

Cosmic Rays = Cosmic Accelerator

Cosmic Shower

Production of New Particles

muons are living always 2.2 10⁻⁶ sec in they rest frame, but they are seen by an

observer as flying a distance much longer than the one ~ to their lifetime

Width:

The uncertainty principle from Heisenberg for an unstable particle is :

Measuring widths, one is able to have information on very small lifetimes. This is the way one can have information on a phenomenon extremely fast (the fastest in Nature?...) : a particle with a lifetime of 10⁻²³ sec)

Decay	mc ²	τ	Γ c ²	
$K^{*0} \rightarrow K^{-} \pi^{+}$	892 MeV	1.3 10 ⁻²³ s	51 MeV	Measurable width
$\pi^0 \rightarrow \gamma \gamma$	135 MeV	8.4 10 ⁻¹⁷ s	8 eV	
$D_s \rightarrow \phi \pi^+$	1969 MeV	0.5 10 ⁻¹² s	10 ⁻³ eV	

Measurable lifetimes

Breit-Wigner

(approximate computations)

- Schrödinger equation (free particle with energy E₀):
 - $i\hbar \frac{\partial \psi}{\partial t} = H\psi = E_0 \psi$ $\Rightarrow \psi = a e^{-\frac{i}{\hbar} E_0 t}$ $\Rightarrow \psi = a e^{-i\frac{c^2}{\hbar} m_0 t} \text{ (particle rest frame } E_0 = m_0 c^2\text{)}$
 - stable particle : $|\psi(t)|^2 = |\psi(0)|^2 = |a_0|^2$ - unstable particle : $\Rightarrow \psi(t) = a_0 e^{-i\frac{c^2}{\hbar} (m_0 - i\frac{\Gamma}{2})t} \Rightarrow a = a_0 e^{-\frac{t}{2\tau}} \Rightarrow |\psi(t)|^2 = |\psi(0)|^2 e^{-t/\tau}$

We want the probability to find a state of energy E

$$A(E) = \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} \psi(t) e^{\frac{i}{\hbar}Et} dt \propto \frac{1}{\left(E - m_0 c^2\right) + i \frac{\Gamma c^2}{2}}$$

Probability = $|A|^2$

$$\Rightarrow \left| A \right|^2 \propto \frac{1}{\left(E - m_0 c^2 \right)^2 + \Gamma^2 c^4 / 4}$$

Several possible final states (decay modes/channels) :

⇒ branching ratios (BR_i) : probability to obtain a final state i ($\Sigma_i BR_i=1$) partial width Γ_i (definition) : $BR_i=\Gamma_i/\Gamma$ Example:

Relation between lifetime, partial widths and branching ratios :

 $\Lambda \rightarrow p\pi$ in 64 % of the cases $\Lambda \rightarrow n\pi^0$ in 36 % of the cases

 $\tau = \frac{\hbar}{c^2} \frac{1}{\Gamma} = \frac{\hbar}{c^2} \frac{BR_i}{\Gamma_i}$

Example : Z⁰ partial widths

Charge = 0 Mass $m = 91.1882 \pm 0.0022$ GeV ^[d] Full width $\Gamma = 2.4952 \pm 0.0026$ GeV $\Gamma(\ell^+ \ell^-) = 84.057 \pm 0.099$ MeV ^[b] $\Gamma(\text{invisible}) = 499.4 \pm 1.7$ MeV ^[e] $\Gamma(\text{hadrons}) = 1743.8 \pm 2.2$ MeV $\Gamma(\mu^+ \mu^-)/\Gamma(e^+ e^-) = 0.9999 \pm 0.0032$ $\Gamma(\tau^+ \tau^-)/\Gamma(e^+ e^-) = 1.0012 \pm 0.0036$ ^[f]

You can see that Z⁰ in different decay modes has always the same width which is related to his lifetime

J = 1

Experimental spectra

experimental spectrum $K^{-}\pi^{+}$:

• Search for a K⁻ and a π^+ in the detector and computation of the invariant mass

π^0 experimental spectrum :

 γ reconstruction and computation of the invariant mass.

<u>D_s experimental spectrum</u>: (D_s $\rightarrow \phi \pi^+$ and $\phi \rightarrow \pi^+\pi^-$)

 $\tau(D_s)$:

Measurement of the D_s lifetime

 $t = \frac{L \cdot m}{p}$ t: proper time

Experiment CLEO : $\tau(D_s) = 486.3 \pm 15.0 \pm 5.0$ fs

<u>Cross Section : σ </u>

The number of interactions per unit of volume and time is thus defined by

- The physics processes σ are « hidden » in this term
- The number of particles per unit of volume in the beam (n_1)
- The number of particles per unit of volume in the target (n_2)
- σ: [L]²
- $1 \text{ barn} = 10^{-24} \text{ cm}^2$

Parentheis : From cross section \rightarrow number of produced event : the luminosity

k bunches

f (=c/circumference) frequency

 N_+ : number of electrons in a bunch

N₋: number of positrons in a bunch

An example : PEP-2 (where BaBar detector was installed)

Circumference	2200 m
l(e ⁻)	0.75 A
l(e+)	2.16 A
N _{paquets}	2 x 1658
N(e ⁻)/bunch	2.1 10 ¹⁰
N(e ⁺)/bunch	6.0 10 ¹⁰
Beams size	s _x =150 μm, s _y =5 μm

$$L = \frac{k f N_+ N_-}{S_x S_y}$$

$$\Rightarrow$$
 L=3 10³³ cm⁻² s⁻¹

Macroscopic quantity \rightarrow relates the microscopic world (σ) to a number of events

$$\frac{dN}{dt} = L \cdot \sigma$$

How to calculate Widths and Cross Sections

More advanced

The total cross section σ for a collision a+b \rightarrow 1+2+...n and the width for a decay Γ a \rightarrow 1+2+... n are given by :

$$d\sigma = \frac{1}{F} \sum_{int} |\langle f | T | i \rangle|^2 (2\pi)^4 \, \delta^4 \left(Q_f - Q_i \right) \prod_{k=1}^n \frac{d^3 p_k}{(2\pi)^3 2E_k}$$

$$d\Gamma = \frac{1}{2m_a} \sum_{int} |\langle f | T | i \rangle|^2 (2\pi)^4 \, \delta^4 \left(Q_f - Q_i \right) \prod_{k=1}^n \frac{d^3 p_k}{(2\pi)^3 2E_k}$$

$$F: \text{ flux : } F = 4\sqrt{q_a q_b - m_a^2 m_b^2}$$

$$\sum_{int} : \text{ over all the internal degrees of freedom of the final particles}$$

$$T: \text{ depend upon spins and momenta}$$

$$\langle f | T | i \rangle: \text{ matrix element of the transition } |i\rangle \rightarrow |f\rangle$$

$$Q_i = q_a + q_b \text{ momentum-energy quadrivector energie of the initial state } |i\rangle$$

$$\overline{p}_k, E_k: \text{ momentum and energy of the } k^{th} \text{ particle in the final state}$$

Differential element :

This term contains all the kinematics

$$d\phi_n(Q_i, q_1, ..., q_n) = (2\pi)^4 \,\delta^4 (Q_f - Q_i) \prod_{k=1}^n \frac{d^3 p_k}{(2\pi)^3 \, 2E_k}$$
This term contains all the kinematics
 $d^3 p = p^2 dp d\Omega$
 $d\Omega = d \cos \theta d\phi$

Named phase space at n-body

Taking the case of :a+b \rightarrow 1+2 ou a \rightarrow 1+2 we write :

We obtain

$$\begin{cases} \frac{d\sigma}{d\Omega^*} \Big|_{a+b\to 1,2} = \boxed{\frac{1}{64\pi^2} \cdot \frac{1}{s} \cdot \frac{p_f^*}{p_i^*}} \sum_{int} |T_{fi}|^2 \\ \frac{d\Gamma}{d\Omega^*} \Big|_{a\to 1,2} = \boxed{\frac{1}{32\pi^2} \cdot \frac{p_f^*}{m_a^2}} \sum_{int} |T_{fi}|^2 \\ From & \text{Feynman & diagram..} \end{cases}$$
Kinematics

$$a+b \rightarrow 1+2$$

$$E_1^* = \frac{m_1^2 - m_2^2 + s}{2\sqrt{s}} \quad ; \quad E_2^* = \frac{m_2^2 - m_1^2 + s}{2\sqrt{s}} \quad \Rightarrow p^*$$

$$a \rightarrow 1+2$$
In a decay we have $s=m_a^2$

If we suppose that $m_1 = m_2 = m$

$$p^* = \sqrt{\left(\frac{m_a}{2}\right)^2 - m^2}$$

if we neglect the masses of the final particles $m_{1,2} \ll m_a$

$$p^* = \frac{m_a}{2}$$

The Particle Data Group book : where all the measured particles properties are recorded (paper or internet)

π^+ decay modes	Fraction (Γ _i /Γ) Co	onfidence level (MeV/c)	
$\mu^+ \nu_{\mu}$	[b] (99.98770 ± 0.00004)	% 30	
$\mu^+ \nu_\mu \gamma$	[c] (2.00 ±0.25)	$\times 10^{-4}$ 30	
$e^+\nu_e$	$[b]$ (1.230 ± 0.004)	× 10 ⁻⁴ 70	
$e^+ \nu_{e_{\perp}} \gamma$	$[c]$ (1.61 ± 0.23)	$\times 10^{-7}$ 70	
$e^+\nu_e\pi^0$	(1.036 ± 0.006)	$\times 10^{-8}$ 4	
$e^+\nu_e e^+e^-$	(3.2 ± 0.5)	$\times 10^{-9}$ 70	
$e^+ \nu_e \nu \overline{\nu}$	< 5	$\times 10^{-6} 90\%$ 70	
	This is $BR_i = \Gamma_i / \Gamma$	This is the p _{ma}	x from the
		previous page	. Obtained by 4-
	$\tau - \frac{\hbar}{\hbar} \frac{1}{1} - \frac{\hbar}{\hbar} \frac{BR_i}{BR_i}$		nservation
	$c^2 \Gamma^2 \Gamma^2 \Gamma_i$	$m_{\pi}^{2} + m_{\pi}^{2}$	$m_{\mu}^2 - m_{\nu}^2$
		$E_{\mu} = \frac{1}{2}$	$\overline{m_{\pi}}$
rt example Can be much	longer !	$p_{\mu}^{*} = \sqrt{E_{\mu}^{*2}} -$	$- m_{\mu}^{*2}$

p_{max} ~30 MeV

the interactions

Interactions : introduction

Classical physics :

The particle P_1 creates around it a force field. If one introduces the particle P_2 in this field it undergoes the force.

Electrostatic example :

$\begin{array}{cccccc} \mathbf{P}_1 & \overrightarrow{F} & \overrightarrow{E} & \mathbf{P}_2 \\ \bullet & & \bullet \\ \mathbf{q}_1 & r & \mathbf{q}_2 \end{array}$

$$\vec{F} = q_2 \vec{E}(r) = q_2 \frac{kq_1}{r^2} \vec{u_r}$$

«modern» physics:

 P_1 and P_2 exchange a field quantum; the interaction boson

P₁ P₂ • The heavier the ball, the more difficult it will be to throw it far away

Range of the interaction $\infty 1/mass$ of the vector

• Creation and exchange of an interaction particle

 \Rightarrow violation of the energy conservation principle during a limited time

$$\Delta t \approx \frac{\hbar}{\Delta E} = \frac{\hbar}{mc^2}$$
 Heisenberg principle

• During Δt the particle can travel $R = c \Delta t$

$$R = \frac{\hbar c}{mc^2}$$
 Range \rightarrow « reduced » wave length (Compton)

with $\hbar c \simeq 197.3 \text{ MeV fm}$

Example : an interaction particle with $m = 200 \text{ MeV} \Leftrightarrow R = 1 \text{ fm}$

Shape of the interaction potential

43

Force	Relative intensity (order of magnitude)	Vector	Lifetime (order of magnitude)
Strong	1	Gluons	10 ⁻²⁴ s
electromagnetic	10 ⁻²	Photon	10 ⁻¹⁹ - 10 ⁻²⁰ s
Weak	10 ⁻⁵	W and Z ⁰	10 ⁻¹⁶ - 10 ⁺³ s
Gravitation	10 ⁻⁴⁰	Graviton	???

For the strong, electromagnetic and gravitational interactions these orders of magnitudes can be obtained comparing the binding energy of 2 protons separated by ~1fm

The intensity of the interactions dictates the particles lifetimes and their interaction cross sections.

Electromagnetism (QED)

- Between charged particles
- Vector of the interaction : the photon (γ)
- One Feynman graph for QED:

Feynman graph

- A powerful « graphical » method to display the interaction in perturbations theory (each diagram is a term in the perturbation series)
- Each graph is equivalent to « a number »

Lines are particles which propagate in space-time

(D'

u-

particle

(q)

Horizontal axis: the time

• \rightarrow computation of the matrix elements and of the transition probabilities

```
The • represent the vertices «location» of the interaction (where there is quantum number conservation)

• (k) • (k') • (
```

Vertex: $\sqrt{\alpha}$ factor in the matrix element « interaction intensity »

Propagator:

Vector boson of the interaction

factor $ig_{\nu\nu}/(q^2-m^2)$ (depends also on spin ...)

The way we see the electron and the photon is modified

and experimental (g-2) consequences

e-

e-

e-

e-

e-

(g-2) : Experimental evidence of the vacuum polarisation

Gyro-magnetic ratio g

• The magnetic moment associated associated to the angular momentum of the electron

• Intrinsic magnetic momentum :

Dirac : for spin ½ point-like particles : *g*=2

$$\vec{\mu} = g \mu_B \vec{S}$$
 spin
gyro-magnetic spin ratio

The value of g is modified by :

a=0.00115965241 ± 0.0000000020 experiment (10⁻¹¹ precision) a=0.00115965238 ±0.0000000026 theory (α^3)

Gravitational Force

To compare with the electromagnetic force for the hydrogen atom

The effects of gravitation are very small at the atom scale → neglected..

• Important effects if
$$\alpha_{grav} \sim 1$$

 $\frac{e^2}{4\pi\varepsilon_0\hbar c} = \alpha \approx \frac{1}{137}$

 $\frac{Gm_em_p}{\hbar c} = \alpha_{grav} \approx 3.3 \times 10^{-42}$

$$\frac{Gm^2}{\hbar c} \sim 1 \Longrightarrow mc^2 \sim 10^{19} GeV$$
 Masse de Planck

- For energies much lower than 10¹⁹ GeV we can neglect gravitational effects
- Actually there is not satisfactory theory for gravitation

Interactions : summary

- The interactions are mediated by vector bosons interaction range \propto 1/mass
- Feynman graph = display of a matrix element of the transition in the perturbations series framework
- Virtual particles (off-shell particles during a short time)
- <u>QED</u>: electric charge, γ , vacuum polarisation, $\alpha \nearrow$ with energy

Strong interaction (discussed in a devoted lectures)

Weak interaction (discussed in devoted lectures)

- <u>QCD</u>: colour, gluons (self-interaction), $\alpha_s >$ with energy (asymptotic freedom)
- <u>Weak:</u> concerns all fermions, W^{\pm} , Z^{0}

71912 (*Rutherford*) proton1932 (*Chadwick*) neutron

Interaction is transported by particles

> 100 years of search and discoveries

All our knowledge is today « codified » in the **Standard Model** : Matter, Interaction, Unification Interaction, Unification

•The Standard Model :

- Classify the matter particles in family (fermions)
- Explain the interactions through local gauge principle symmetry (bosons)
- Allow the particle to acquire masses through the Higgs mechanism

APPENDIX I : Angular momentum and spin

Angular momentum

Classical mechanics :

 $\vec{L} = \vec{r} \wedge \vec{p}$

3 components :

- can be measured with infinite precision
- can have all values

Quantum Mechanics :

same definition, with the operators R and P (notation L or L) •The algebra of the components of L : $[L_i, L_j] = i \epsilon_{iik}L_k$; $\epsilon_{iik} = 0, +1, -1$ according to *ijk*. One also has : $L^2=L_i^2+L_i^2+L_k^2$; $[L^2,L_i]=0$ •2 independent operators (usually : L^2 et L_z) (2 useful quantum numbers) ħ •quantification:

- •L²: $\ell(\ell+1)\hbar^2$; ℓ is an integer •L_z: $m\hbar$ with $m = -\ell, -\ell+1, ..., -1, 0, 1, ..., \ell$, $\ell, \ell -\hbar$
- Addition of 2 angular momenta :

$$|j_1, j_2; m_1, m_2\rangle = \sum_{J=|j_1-j_2|}^{j_1+j_2} \sum_{M=-J}^{J} |J, M\rangle \langle J, M| j_1, j_2; m_1, m_2\rangle$$

Clebsch-Gordan(CG) coefficients

<u>Spin</u>

- The spin is the intrinsic kinetic momentum of a particle.
- it can be half-integer
- It determines the behavior of a given particle.
- Few examples of experimental evidences for the spin :

- Fine structure of the atoms spectral lines : each line is made of several components very close in frequency
- "Abnormal » Zeeman effect : Each spectral line is divided in a given number of equidistant lines when the atom is in an uniform magnetic field. «Anomaly» : the atoms of Z odd (ex. Hydrogen) divide into an even number of sub-level. In fact the number of levels is $2\ell+1 \rightarrow$ proof of half integer kinetic momentum !
- The spin has no classical equivalent. Trying to explain it saying that the particle rotates on its own axis does not work.

e,p,n have very different characteristics (charge/ mass/interaction) but they have the same spin : $\frac{1}{2}$

- The spin obeys the same laws as the other kinetic momenta :
 - Algebra similar as the L one
 - S² can have the values $s(s+1)\hbar^2$ (s can be half integer)
 - And S_z : *m* \hbar with m = -s, -s + 1, ..., -1, 0, 1, ..., s 1, s
 - One can add a spin with
 - An other spin $(S = S_1 \oplus S_2)$
 - With an total angular momentum $(J = L \oplus S)$

A particle can have any angular momentum *L* but its spin *S* is fixed

	integer spin (Bosons)		Half integer spin (Fermions)	
	spin 0	spin 1	spin 1/2	spin 3/2
Elementary	-	Vectors of the interactions	quarks, leptons	-
Composite	pseudo-scalar mesons (p,K)	Vector mesons (p,K*)	some baryons (octet)	some baryons (decuplet)

spin/statistics theorem (Pauli 1940)

Pauli's exclusion principle : two particles of half integer spin (fermions) cannot be simultaneously in the same quantum state

Pauli's principle

anti-symmetry of the wave function by the exchange of 2 particles (for the fermions)

Bohr and Pauli

For 2 particles one in the state ψ_{α} , the other one in the state ψ_{β} , one can write :

$$\psi(1,2) = \frac{1}{\sqrt{2}} \left(\psi_{\alpha}(1)\psi_{\beta}(2) + \psi_{\beta}(1)\psi_{\alpha}(2) \right) \quad \text{Symmetric (bosons)}$$
$$\psi(1,2) = \frac{1}{\sqrt{2}} \left(\psi_{\alpha}(1)\psi_{\beta}(2) - \psi_{\beta}(1)\psi_{\alpha}(2) \right) \quad \text{anti-symmetric (fermions)}$$

If 2 fermions are in the same state ($\alpha = \beta$) their wave function is 0 ! This problem does not exist for bosons which can occupy the same state (ex. supra- conductors).

This can be generalized for a larger system of particles.

Helicity

- Particle of spin \vec{S}
- Axis orientation in the momentum direction \vec{n}
- Helicity :

$$\Lambda = \vec{n} \cdot \vec{S} \text{ with } \vec{n} = \frac{p}{\left|\vec{p}\right|} \quad \Lambda = \vec{n} \cdot \vec{J} \text{ because } \vec{p} \cdot \vec{L} = \vec{p} \cdot \left(\vec{r} \wedge \vec{p}\right) = \vec{0}$$

- Eigenvalues $-s \le \lambda \le s$ 2s+1 values
- if mass=0 only 2 eigenvalues : ±s

The helicity is invariant under rotation (scalar product of 2 vectors).

APPENDIX III : two body space phase

$$d\Gamma = \frac{1}{2m_a} \sum_{\text{int}} \left| \left\langle f \left| T \right| i \right\rangle \right|^2 (2\pi)^4 \, \delta^4 \left(Q_f - Q_i \right) \prod_{k=1}^2 \frac{d^3 p_k}{(2\pi)^3 2E_k}$$
$$Q_i = q_a + q_b \quad \text{quadrivecteur energie impulsion de l'etat initial } \left| i \right\rangle$$

 $Q_i = \sum_{k=1}^{2} q_k$ quadrivecteur energie impulsion de l'etat initial $|f\rangle$

 \vec{p}_k, E_k : impulsion, energie de la k^{ieme} particule finale

$$d\psi = \int_{4} (2\pi)^{4} \delta^{4} (Q - q_{1} - q_{2}) \prod_{k=1}^{2} \frac{d^{3} p_{k}}{(2\pi)^{3} 2E_{k}}$$

On intègre sur 4 variables à choisir parmi les 6 impulsions afin de faire disparaître la fonction δ qui représente la conservation de l'énergie-impulsion

On se place dans le référentiel du centre de masse : $Q = (\sqrt{s}, \vec{0})$

$$d\psi = \int_{4} (2\pi)^{4} \delta \left(\sqrt{s} - E_{1} - E_{2}\right) \delta^{3} \left(\vec{p}_{1} + \vec{p}_{2}\right) \frac{d^{3}p_{1}}{(2\pi)^{3} 2E_{1}} \frac{d^{3}p_{2}}{(2\pi)^{3} 2E_{2}}$$

Après intégration sur les 3 composantes de p_2

$$d\psi = \frac{1}{4(2\pi)^2} \int_1 \delta\left(\sqrt{s} - E_1 - \sqrt{p_1^2 + m_2^2}\right) \frac{d^3 p_1}{E_1 \sqrt{p_1^2 + m_2^2}}$$

On choisit maintenant d'intégrer sur E_1 et on utilise: $p_1^2 = E_1^2 - m_1^2$ $d^3p_1 = p_1^2 dp_1 d\Omega_1 = p_1 E_1 dE_1 d\Omega_1$

$$d\psi = \frac{1}{4(2\pi)^2} \int_1 \delta\left(\sqrt{s} - E_1 - \sqrt{E_1^2 - m_1^2 + m_2^2}\right) \frac{\sqrt{E_1^2 - m_1^2}}{\sqrt{E_1^2 - m_1^2 + m_2^2}} dE_1 d\Omega_1$$

Cette intégrale est de la forme $\int g(x)\delta(f(x)) dx = \frac{g(x_0)}{|f'(x_0)|} \quad \text{avec } x_0 \text{ tel que } f(x_0) = 0$ $\text{avec }: f(E_1) = E_1 + \sqrt{E_1^2 - m_1^2 + m_2^2} - \sqrt{s} \quad \Rightarrow f'(E_1) = 1 + \frac{E_1}{\sqrt{E_1^2 - m_1^2 + m_2^2}}$ $g(E_1) = \frac{\sqrt{E_1^2 - m_1^2}}{\sqrt{E_1^2 - m_1^2 + m_2^2}}$ $\frac{g(E_1)}{f'(E_1)} = \frac{\sqrt{E_1^2 - m_1^2}}{\sqrt{E_1^2 - m_1^2 + m_2^2}} \cdot \frac{\sqrt{E_1^2 - m_1^2 + m_2^2}}{\sqrt{E_1^2 - m_1^2 + m_2^2} + E_1} = \frac{\sqrt{E_1^2 - m_1^2}}{\sqrt{E_1^2 - m_1^2 + m_2^2} + E_1}$

La fonction $f(E_1)$ s'annule pour la valeur E_{10} telle que $E_{10} = \frac{1}{2\sqrt{s}} \left(s + m_1^2 - m_2^2\right)$

 E_{10} est la valeur qui correspond à l'énergie de la particule 1 dans le centre de masse

$$\frac{g(E_{10})}{f'(E_{10})} = \frac{\sqrt{E_{10}^2 - m_1^2}}{\sqrt{E_{10}^2 - m_1^2 + m_2^2} + E_{10}} = \frac{p_{10}}{\sqrt{s}}$$

$$d\psi = \frac{1}{4(2\pi)^2} \frac{p_{10}}{\sqrt{s}} d\Omega_1 = \frac{1}{16\pi^2} \frac{p^*}{\sqrt{s}} d\Omega_1$$

• Product of the luminosity of a characteristic time (1 year ..., experiment lifetime ...)

$$L_{\text{int}} = \int L dt \quad cm^{-2} \quad \text{or barn}^{-1}(b^{-1})$$

•PEP-2 example L=3 10³³ cm⁻² s⁻¹ 1 year (~ 10⁷ seconds)

- $L_{int} = 3 \ 10^{40} \ cm^{-2} = 30 \ fb^{-1}$ • $N = \sigma \ L_{int}$ 1 $b = 10^{-24} \ cm^{2}$ 1 $fb = 10^{-15} \ b$
- production cross section of the l'Y(4s) : ~1.1 nb

 $1 \text{fb}^{-1} = 10^{39} \text{ cm}^{-2}$

 \Rightarrow 33 10⁶ Y(4s) produced by year by the PEP-2 machine

 L_{int} takes into account the machine operation : convenient !