Introduction

†o

Particle Physics

Marie-Hélène Schune and Achille Stocchi LAL-Orsay Université Paris-Sud and IN2P3/CNRS

- Introduction to Particle Physics (history/interaction/symmetries)
- The strong interaction
- The weak interaction
+ EXCERCISES!
- Heavy Flavours
- The Standard Model and Higgs
- Heavy Flavours to search for New Physics
- Few open questions

Chapter I

Introduction

†o

Particle Physics

1.1

What is

particle physics

about?

The laws of « this world» are not really intuitive..

$$
\begin{gathered}
E=m c^{2} \\
\text { High Energy Physics }
\end{gathered}
$$

Mass/Energy

$\xrightarrow{\longrightarrow}$ New particles production

Particle world is described by quantum field theory It is our main working tool for particles physics
It comes from the marriage between quantum mechanics and relativity

The particle world: Physics of the two-infinities

Produce particles at $100 \mathrm{GeV} \sim 10^{-8}$ Joule

Temperature $\sim 10^{15}$ degrees

Condition of the Universe after $\sim 10^{-10}$ sec from Big Bang

Particles (which are very small « objects ») of high energy are instruments to go back in time (very large scales)

The mass

Defined by: $m^{2} c^{4}=E^{2}-p^{2} c^{2}$

```
With c=1 E, p and m}\mathrm{ are expressed using the same unity (GeV/MeV ....)
```

- When $p=0 \Rightarrow E=m c^{2}$
- When v increases $\Rightarrow E^{2}$ et $p^{2} c^{2}$ increase but their difference remains constant
- m is a Lorentz invariant

New particles production:

It is not "divisibility"!

Since c is large small mass

Large energy

Mass/energy

mass
energy

A particle is a lump of energy

MICROSCOPIC WORLD

Determination of the quantum
Determination of
m / e for electrons nature and the value of the electric nature and the value of the el
charge for electrons


```
Today
```

Today
- e=1.602176462(63)10-19 C
- e=1.602176462(63)10-19 C
- m=9.10938188(72) 10-31 kg

```
    - m=9.10938188(72) 10-31 kg
```

1 Joule $=1$ Coulomb* ${ }^{\text {Volt }}$
$1 \mathrm{eV}=$ Energy for an electron fealing a potential difference of 1 V

$$
1 \mathrm{eV} / \mathrm{c}^{2}=1.7810^{-36} \mathrm{~kg}
$$

$1 \mathrm{eV} / \mathrm{c}^{2}=1.7810^{-36} \mathrm{~kg}$

$$
\begin{aligned}
& m_{e}=0.5 \mathrm{MeV} / \mathrm{c}^{2}=0.5 \mathrm{MeV}(c=1) \\
& m_{p}=938 \mathrm{MeV} \approx 1 \mathrm{GeV}
\end{aligned}
$$

1 Joule $=1$ Coulomb* 1 Volt
$1 \mathrm{eV}=$ Energy for an electron fealing a potential difference of 1 V

$$
1 \mathrm{eV}=1.610^{-19} \text { Joule }
$$

$$
\mathrm{mc}^{2}=9.110^{-31} \mathrm{~kg} \times\left(310^{8}\right)^{2} \mathrm{~m}^{2} / \mathrm{sec}^{2}=5010^{4} \mathrm{eV}
$$

$$
\mathrm{KeV}\left(10^{3} \mathrm{eV}\right)
$$

$$
\mathrm{MeV}\left(10^{6} \mathrm{eV}\right)
$$

$$
\mathrm{GeV}\left(10^{9} \mathrm{eV}\right)
$$

$$
\mathrm{TeV}\left(10^{12} \mathrm{eV}\right)
$$

An historical

introduction

Historical overview

A bit of history

- 1897 (Thompson)
- 1912 (Rutherford)
- ~1930 (Pauli/Fermi)
electron discovery
proton discovery
1958 (Reines-Cowan) : experimental evidence
- 1932 (Chadwick)
- 1932 (Anderson) neutron discovery

In the '30s one knows : $e^{-} p n$ and v_{e} the electromagnetic force and the γ
Framework to try to explain the forces between p , then between p and $n \Rightarrow$ Strong interaction
Observation of unstable particles in cosmic rays $+\beta$ decays $\quad \Rightarrow$ Weak interaction
Many particles :

- $1947 \pi \rightarrow \mu \nu_{\mu}$
-1947 strange particles : K Λ

When the muon was discovered the physicist I.
Rabi said:

- 1955 (Chamberlain, Segre, Wiegand, Ypsilantis) antiproton discovery

1964 Zweig-GellMann-Neeman : theoretical introduction of quarks
'70 SLAC
Deep inelastic scattering experiments
Experimental evidence of quarks

$$
\mathrm{p} \equiv(\mathrm{uud}) \quad \mathrm{n} \equiv(\mathrm{udd})
$$

Strange particles ($\Lambda, \mathrm{K} \ldots$...): quark s

.... New particles..
-1974 (Richter/Ting) J/ ψ discovery ($\overline{\mathrm{c}}$) : c quark
-1975 (Perl) discovery of the τ lepton
-1977 (Ledermann) Y discovery (b̄ bound state) : b quark
-1995 (CDF/DØ coll.) t quark
-2000 (Donut) : ν_{τ}

12 matter particles to explain all known particles !
Hadrons : any particle which undergoes the strong interaction (Nucleon : neutron and proton)

Baryons half integer spin (ex: p =(uud))

Mesons integer spin
(ex: $\pi=(\mathrm{u} \overline{\mathrm{d}}))$
Leptons : Any particle which does not undergo the strong interaction $(e, \mu, \tau)\left(v_{e}, v_{v}, v_{\tau}\right)$

Interaction particles

- Classical mechanics : interactions = force field
- Modern physics : interactions = interaction particles which are field quanta

1973 Observation at CERN of the "weak neutral currents"
Interactions between neutrinos \rightarrow " Z^{0} "?

1976 Standard Model. Electroweak unification

$$
\Rightarrow \sim, \mathrm{Z}^{0} \mathrm{~W}^{+} \rightarrow \begin{aligned}
& \text { They are vectors of the weak interaction, their masss } \\
& \text { are predicted }
\end{aligned}
$$

1983 Observation at CERN of the Z^{0} and W^{+-}bosons
1989 « Mass production» of Z^{0} at LEP at CERN
1996 Production of $\mathrm{W}^{+} \mathrm{W}^{-}$pairs at LEP at CERN

2012 DISCOVERY OF THE HIGGS BOSON AT LHC (CERN)

Elementary particles

3 families of fermions: matter

+ anti-matter!
3 forces: electromagnetism, weak interaction, strong interaction

And the Higgs boson!

The particles are characterized by :

- their spin
- their mass
- the quantum numbers (charges) determining their interactions

All our knowledge is today « codified » in the Standard Model :
Matter, Interaction, Unification Interaction, Unification

The fermions and their masses

The interactions and their mediators

Spin 1 particles

$$
m=0
$$

Electromagnetism


```
m=0
```

Strong interaction
1

$$
m=91.2 \mathrm{GeV}
$$

Weak interaction10^{-8}

Gravity :
negligible at the scale of elementary particles We do not know today how to quantify it

Probe the underlying structure of matter

Production of new particles

$$
E=M c^{2}
$$

(High energy physics

Quantum	Electromagnetism	Special	Gravity
Mechanics	(Maxwell's Theory)	Relativity	(Newton's Theory)

Physical Theories now:

Standard Model
General Relativity

Anti-matter ?

To each particle one can associate an anti-particle : same mass but all quantum numbers opposite

Anti-Matter

In 1931 Dirac predicts the existence of a particle similar to the electron but of charge + e

Discovery of the positron

- The radius of curvature is smaller above the plate. The particle is slow down in the lead \rightarrow the particle in incoming from the bottom
- The magnetic field direction is known \rightarrow positive charge
- From the density of the drops one can measure the ionizing power of the particle \rightarrow minimum ionizing particle
- Similar ionizing power before and after the plate
\rightarrow same particle on the 2 sides
- Curvature measurement after the lead : particle of $\sim 23 \mathrm{MeV}$
\rightarrow it is not a non-relativistic proton because he would have lost all its energy after $\sim 5 \mathrm{~mm}$ (a track of $\sim 5 \mathrm{~cm}$ is observed)

Particle of positive electric charge and with a mass
much smaller than the proton mass $\left(<20 \mathrm{~m}_{\mathrm{e}}\right)$: the positron

1.3

Two important observables:

Lifetime/Width : τ / Γ
Cross Section: σ

Lifetime : τ

Lifetime : the exponential law

Instable particles and nuclei : number of decays per unit of time ($\Delta \mathrm{N} / \Delta \mathrm{T}$) proportional to the number of particles/nuclei (N)

```
NN=cte }\timesN\times\Deltat=>\mathrm{ exponential law
```

$$
N(t)=N_{0} e^{-t}(t)
$$

Mean lifetime (defined in the particle rest frame)

The majority of the particles are instable τ from $10^{-23} \mathrm{sec}$ (resonances) to $\sim 10^{+3} \mathrm{sec}$ (neutron)

The probability for a radioactive nucleus to decay during a time interval t, does not depend on the fact that the nucleus has just been produced or exists since a time T :
$\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{T}+\mathbf{t}\end{array}\right]=\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{T}\end{array}\right] \times\left[\begin{array}{l}\text { Survival probability } \\ \text { after the time } \mathbf{t}\end{array}\right] \quad \mathrm{e}^{\mathrm{a}+\mathrm{b}}=\mathrm{e}^{\mathrm{a}} \times \mathrm{e}^{\mathrm{b}}$

Few important examples of different lifetimes

- Stable particles : $\gamma, \mathrm{e}, \mathrm{p}, \nu \rightarrow$ the only ones !

```
proton stability }\tau(\textrm{p})>~1\mp@subsup{0}{}{32}\mathrm{ ans
```

- particles with long lifetimes:

$$
\begin{aligned}
& \mathrm{n} \rightarrow \mathrm{p}+\mathrm{e}^{-}+\bar{v}_{\mathrm{e}} \\
& \mu^{-} \rightarrow \mathrm{e}^{-}+\bar{v}_{\mathrm{e}}+v_{\mu} \\
& \left.\pi^{+} \rightarrow \mu^{+} v_{\mu} \text { (mainly }\right) \\
& \mathrm{K}^{+}
\end{aligned}
$$

$$
\begin{array}{ll}
\tau=6.13 & 10^{+2} \mathrm{sec}, \beta \text { decay } \\
\tau=2.2 & 10^{-6} \mathrm{sec}, \text { cosmic rays } \\
\tau=2.6 & 10^{-8} \mathrm{sec} \\
\tau=1.2 & 10^{-8} \mathrm{sec}
\end{array}
$$

- particle with short lifetimes:

D^{+}	$\tau=1.0410^{-12} \mathrm{sec}$
B^{+}	$\tau=1.610^{-12} \mathrm{sec}$
$\Delta^{++} \rightarrow \mathrm{N} \pi$	$\tau \sim 10^{-23} \mathrm{sec}$

particles which can be directly detected

- The lifetimes are given in the particle rest frame
- What we see is the lifetime in the laboratory rest frame
\rightarrow one should take into account the relativistic time dilation
\rightarrow In real life one measures lengths in the detector

$$
\mathrm{L}=\begin{array}{ccc}
\beta \gamma & \times & \mathbf{C} \tau \\
\text { Boost } \times & \text { lifetime }
\end{array}
$$

- Some particles are seen as stable in the detectors.
- Example a pion ($\mathrm{c} \tau=7.8 \mathrm{~m}$) :
if $\mathrm{E}_{\pi}=20 \mathrm{GeV} \rightarrow \gamma=20 / \mathrm{m}_{\pi}=142.9$;
$\beta=0.999975$
«Event display » of the BELLE experiment $\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B} \overline{\mathrm{B}}, \mathrm{E}_{\mathrm{CM}}=10.58 \mathrm{GeV}\right)$

$\rightarrow \mathrm{L}=1114.3 \mathrm{~m}$
particles which can be directly detected in the detector : $\mathrm{n}, \gamma, \mathrm{e}, \mathrm{p}, \mu, \pi^{ \pm}, \mathrm{K}^{ \pm}$

Cosmic Rays = Cosmic Accelerator

Accelerated particles coming from the universe
Cosmic
Shower

Production
of
New Particles
 observer as flying a distance much longer than the one ~ to their lifetime

Width : Γ

- The uncertainty principle from Heisenberg for an unstable particle is :

Heisenberg: $\Delta \mathrm{E} \Delta \mathrm{t} \sim \hbar \quad$| Uncertainty on the mass (width Γ) |
| :--- |
| due to τ |

By definition: $\quad \Gamma c^{2} \equiv \frac{\hbar}{\tau}$

The faster the decay, the larger the uncertainty on m
Stable particle \leftrightarrow well defined mass state

$$
\hbar c=197 \mathrm{MeV} \times 1 \mathrm{fm} \quad ; \quad \hbar=\frac{197 \times 10^{-15}}{3.10^{8}}=6.58210^{-22} \mathrm{MeV} . \mathrm{s}
$$

Measuring widths, one is able to have information on very small lifetimes. This is the way one can have information on a phenomenon extremely fast (the fastest in Nature?...) : a particle with a lifetime of $10^{-23} \mathrm{sec}$)

Decay	mc^{2}	τ	$\Gamma \mathrm{c}^{2}$
$\mathrm{~K}^{* 0} \rightarrow \mathrm{~K}^{-} \pi^{+}$	892 MeV	$1.310^{-23} \mathrm{~s}$	51 MeV
Measurable			
$\pi^{0} \rightarrow \gamma \gamma$	135 MeV	$8.410^{-17} \mathrm{~s}$	8 eV
$\mathrm{D}_{\mathrm{s}} \rightarrow \phi \pi^{+}$	1969 MeV	$0.510^{-12} \mathrm{~s}$	$10^{-3} \mathrm{eV}$
Measurable lifetimes			

- Schrödinger equation (free particle with energy E_{0}):

$$
\begin{aligned}
& i \hbar \frac{\partial \psi}{\partial t}=H \psi=E_{0} \psi \\
& \Rightarrow \psi=a e^{-\frac{i}{\hbar} E_{0} t} \\
& \left.\Rightarrow \psi=a e^{-i \frac{c^{2}}{\hbar} m_{0} t} \text { (particle rest frame } E_{0}=m_{0} c^{2}\right)
\end{aligned}
$$

- stable particle: $\quad|\psi(t)|^{2}=|\psi(0)|^{2}=\left|a_{0}\right|^{2}$

We want the probability to find a state of energy E

$$
A(E)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+\infty} \psi(t) e^{\frac{i}{\hbar} E t} d t \propto \frac{1}{\left(E-m_{0} c^{2}\right)+i \frac{\Gamma c^{2}}{2}}
$$

Probability $=|\mathrm{A}|^{2}$

Several possible final states (decay modes/channels):

\Rightarrow branching ratios $\left(\mathrm{BR}_{\mathrm{i}}\right)$: probability to obtain a final state $\mathrm{i}\left(\Sigma_{\mathrm{i}} \mathrm{BR}_{\mathrm{i}}=1\right)$ partial width Γ_{i} (definition) : $\quad \mathrm{BR}_{\mathrm{i}}=\Gamma_{\mathrm{i}} / \Gamma$

Example:

Relation between lifetime, partial widths and branching ratios:

$$
\tau=\frac{\hbar}{c^{2}} \frac{1}{\Gamma}=\frac{\hbar}{c^{2}} \frac{B R_{i}}{\Gamma_{i}}
$$

Example : Z^{0} partial widths

$$
J=1
$$

Charge $=0$
Mass $m=91.1882 \pm 0.0022 \mathrm{GeV}$ [d] Full width $\Gamma=2.4952 \pm 0.0026 \mathrm{GeV}$ $\Gamma\left(\ell^{+} \ell^{-}\right)=84.057 \pm 0.099 \mathrm{MeV}^{[b]}$
$\Gamma($ invisible $)=499.4 \pm 1.7 \mathrm{MeV}[e]$
Γ (hadrons) $=1743.8 \pm 2.2 \mathrm{MeV}$
$\Gamma\left(\mu^{+} \mu^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=0.9999 \pm 0.0032$
$\Gamma\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0012 \pm 0.0036[f]$
You can see that Z^{0} in different decay
modes has always the same width which
is related to his lifetime
$\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0012 \pm 0.0036[f]$
You can see that Z^{0} in different decay
modes has always the same width which
is related to his lifetime
$\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0012 \pm 0.0036[f]$
You can see that Z^{0} in different decay
modes has always the same width which
is related to his lifetime
$\left(\tau^{+} \tau^{-}\right) / \Gamma\left(e^{+} e^{-}\right)=1.0012 \pm 0.0036[f]$
You can see that Z^{0} in different decay
modes has always the same width which
is related to his lifetime

Experimental spectra

experimental spectrum $\mathrm{K}^{-} \pi^{+}$:

- Search for a K^{-}and a π^{+}in the detector and computation of the invariant mass

Fitted by a Breit-Wigner $\Gamma=51 \mathrm{MeV}$

π^{0} experimental spectrum :
2γ reconstruction and computation of the invariant mass.

$$
\mathrm{PDG} \rightarrow \quad \tau=8.4 \times 10^{-17} \mathrm{~s}
$$

 $\Gamma=8 \mathrm{eV}$

Fit by a gaussian

Detector resolution effect
«combinatorial» background
$\underline{D}_{\underline{s}}$ experimental spectrum : $\left(\mathrm{D}_{\mathrm{s}} \rightarrow \phi \pi^{+}\right.$and $\left.\phi \rightarrow \pi^{+} \pi^{-}\right)$

PDG $\rightarrow \tau=500 \times 10^{-15} \mathrm{~s}$

But one sees >> $10^{-3} \mathrm{eV}$
Fit by a gaussian $\sigma \sim 10 \mathrm{MeV}$

$$
\tau\left(\mathrm{D}_{\mathrm{s}}\right):
$$

Measurement of the D_{s} : lifetime

$$
t=\frac{L \cdot m}{p}
$$

t : proper time

Experiment CLEO : $\tau\left(D_{s}\right)=486.3 \pm 15.0 \pm 5.0 \mathrm{fs}$

Cross Section : σ

The number of interactions per unit of volume and time is thus defined by

- The physics processes σ are « hidden» in this term
- The number of particles per unit of volume in the beam $\left(n_{1}\right)$
- The number of particles per unit of volume in the target $\left(n_{2}\right)$
- $\sigma:[\mathrm{L}]^{2}$
- 1 barn $=10^{-24} \mathrm{~cm}^{2}$

Parentheis: From cross section \rightarrow number of produced event : the luminosity

Instantaneous luminosity

$$
L=\frac{k f N_{+} N_{-}}{s_{x} s_{y}}
$$

k bunches
f (=c/circumference) frequency
N_{+}: number of electrons in a bunch
N_{-}: number of positrons in a bunch

An example : PEP-2 (where

 BaBar detector was installed)| Circumference | 2200 m |
| :--- | :--- |
| $\mathrm{I}\left(\mathrm{e}^{-}\right)$ | 0.75 A |
| $\mathrm{I}\left(\mathrm{e}^{+}\right)$ | 2.16 A |
| $\mathrm{~N}_{\text {paquets }}$ | 2×1658 |
| $\mathrm{~N}\left(\mathrm{e}^{-}\right) /$bunch | 2.110^{10} |
| $\mathrm{~N}\left(\mathrm{e}^{+}\right) /$bunch | 6.010^{10} |
| Beams size | $\mathrm{s}_{\mathrm{x}}=150 \mu \mathrm{~m}, \mathrm{~s}_{\mathrm{y}}=5 \mu \mathrm{~m}$ |

$$
\begin{aligned}
& I(e)=\left[\frac{C}{s}\right. \text { charge } \\
& I(e)=N(e) \times q_{e} \times N_{\text {bunches }}^{e} \times \frac{c}{L_{\text {circ }}}
\end{aligned}
$$

$$
L=\frac{k f N_{+} N_{-}}{s_{x} s_{y}}
$$

$$
\Rightarrow L=310^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
\text { Macroscopic quantity } \rightarrow
$$ relates the microscopic world (σ) to a number of events

How to calculate Widths and Cross Sections

More advanced

The total cross section σ for a collision $\mathrm{a}+\mathrm{b} \rightarrow 1+2+\ldots \mathrm{n}$ and the width for a decay $\Gamma \mathrm{a} \rightarrow 1+2+\ldots \mathrm{n}$ are given by :

$$
\begin{aligned}
& \left.d \sigma=\frac{1}{F} \sum_{\text {int }}|\langle f| T| i\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{4}\left(Q_{f}-Q_{i}\right) \prod_{k=1}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}} \\
& \left.d \Gamma=\frac{1}{2 m_{a}} \sum_{\text {int }}|\langle f| T| i\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{4}\left(Q_{f}-Q_{i}\right) \prod_{k=1}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}} \\
& F: \text { flux }: F=4 \sqrt{q_{a} q_{b}-m_{a}^{2} m_{b}^{2}}
\end{aligned}
$$

To be determined from the interaction
$\sum_{\text {int }}$: over all the internal degrees of freedom of the final particles
T : depend upon spins and momenta
$\langle f| T|i\rangle$: matrix element of the transition $|i\rangle \rightarrow|f\rangle$
$Q_{i}=q_{a}+q_{b}$ momentum-energy quadrivector energie of the initial state $|i\rangle$
$Q_{i}=\sum_{k=1}^{n} q_{k}$ momentum-energy quadrivector energie of the final state $|f\rangle$
\vec{p}_{k}, E_{k} : momentun and energy of the $\mathrm{k}^{\text {th }}$ particle in the final state
Differential element :

$$
d \phi_{n}\left(Q_{i}, q_{1}, \ldots, q_{n}\right)=(2 \pi)^{4} \delta^{4}\left(Q_{f}-Q_{i}\right) \prod_{k=1}^{n} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}}
$$

Named phase space at n-body
This term contains all the kinematics

$$
\begin{aligned}
& d^{3} p=p^{2} d p d \Omega \\
& d \Omega=d \cos \theta d \phi
\end{aligned}
$$

Taking the case of $: a+b \rightarrow 1+2$ ou $a \rightarrow 1+2$ we write :

We obtain

$$
\left\{\begin{aligned}
\left.\frac{d \sigma}{d \Omega^{*}}\right|_{a+b \rightarrow 1,2} & =\frac{1}{64 \pi^{2}} \cdot \frac{1}{s} \cdot \frac{p_{f}^{*}}{p_{i}^{*}} \cdot \sum_{i u t}\left|T_{f i}\right|^{2} \\
\left.\frac{d \Gamma}{d \Omega^{*}}\right|_{a \rightarrow 1,2} & =\frac{1}{32 \pi^{2}} \cdot \frac{p_{f}^{*}}{m_{a}^{2}} \sum_{\text {ut }}\left|T_{f i}\right|^{2}
\end{aligned}\right.
$$

From « Feynman» diagram..

Kinematics

$$
\begin{aligned}
& a+b \rightarrow 1+2 \\
& E_{1}^{*}=\frac{m_{1}^{2}-m_{2}^{2}+s}{2 \sqrt{s}} \quad ; \quad E_{2}^{*}=\frac{m_{2}^{2}-m_{1}^{2}+s}{2 \sqrt{s}} \quad \Rightarrow p^{*} \\
& a \rightarrow 1+2
\end{aligned}
$$

In a decay we have $\mathrm{s}=\mathrm{m}_{a}^{2}$

If we suppose that $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}$

$$
p^{*}=\sqrt{\left(\frac{m_{a}}{2}\right)^{2}-m^{2}}
$$

if we neglect the masses of the final particles $m_{1,2}<m_{a}$

$$
p^{*}=\frac{m_{a}}{2}
$$

The Particle Data Group book : where all the measured particles properties are recorded (paper or internet)

For each particle :

I. 4

Introduction to

the interactions

Interactions : introduction

Classical physics:

The particle P_{1} creates around it a force field. If one introduces the particle P_{2} in this field it undergoes the force.

Electrostatic example :

$$
\begin{array}{cccc}
\mathrm{P}_{1} & \vec{F} & \vec{E} & \mathrm{P}_{2} \\
\bullet & \mathrm{q}_{1} & r & \mathrm{q}_{2}
\end{array}
$$

«modern» physics:
P_{1} and P_{2} exchange a field quantum; the interaction boson
$P_{1} \quad P_{2} \quad$ The heavier the ball, the

- nrarnno
more difficult it will be to throw it far away

Range of the interaction $\propto 1 /$ mass of the vector

- Creation and exchange of an interaction particle
\Rightarrow violation of the energy conservation principle during a limited time

$$
\Delta t \approx \frac{\hbar}{\Delta E}=\frac{\hbar}{m c^{2}} \longleftarrow \text { Heisenberg principle }
$$

- During Δt the particle can travel $R=c \Delta t$

$$
R=\frac{\hbar c}{m c^{2}}
$$

$$
\text { Range } \rightarrow \text { « reduced » wave length (Compton) }
$$

$$
\text { with } \hbar c \cong 197.3 \mathrm{MeV} \mathrm{fm}
$$

Example : an interaction particle with $m=200 \mathrm{MeV} \Leftrightarrow R=1 \mathrm{fm}$

Klein-Gordon equation for a spin 0 particle :
$E^{2}=p^{2} c^{2}+m^{2} c^{4}$
$(i \hbar)^{2} \frac{\partial^{2} \psi}{\partial t^{2}}=(i \hbar)^{2} c^{2} \nabla^{2} \psi+m^{2} c^{4} \psi$

$-\frac{\partial^{2} \psi}{\partial t^{2}}=-c^{2} \nabla^{2} \psi+\frac{m^{2} c^{4}}{\hbar^{2}} \psi$
$\Rightarrow \nabla^{2} \psi-\frac{m^{2} c^{2}}{\hbar^{2}} \psi-\frac{\partial^{2} / \psi}{\partial^{2}} \frac{\partial^{2}}{\partial t^{2}}=0$
(one only deals with stationary states)

$$
\nabla^{2} \psi-\frac{m^{2} c^{2}}{\hbar^{2}} \psi=0
$$

In spherical symmetry : $\psi=U(r)$ and $\Delta U(r)=\nabla^{2} U(r)=\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d U(r)}{d r}\right)=\frac{m^{2} c^{2}}{\hbar^{2}} U(r)$

$$
\begin{array}{ll}
\text { if } m \neq 0: & \\
U(r)=-\frac{g^{2}}{r} e^{-r / R} & \begin{array}{l}
r>0 \\
R=\frac{\hbar}{m c} \\
\end{array} \\
& \text { Rangawa potential }
\end{array}
$$

$$
\begin{aligned}
& \text { if } m=0: \\
& \Delta U(r)=0 \\
& U(r)=-\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
\end{aligned} \begin{array}{ll}
r>0 \\
q_{i}=\text { charge }
\end{array}
$$

In this case the Yukawa potential is equivalent to the Coulomb one

Force	Relative intensity (order of magnitude)	Vector	Lifetime (order of magnitude)
Strong	1	Gluons	$10^{-24} \mathrm{~s}$
electromagnetic	10^{-2}	Photon	$10^{-19}-10^{-20} \mathrm{~s}$
Weak	10^{-5}	W and Z	$10^{-16}-10^{+3} \mathrm{~s}$
Gravitation	10^{-40}	Graviton	$? ? ?$

For the strong, electromagnetic and gravitational interactions these orders of magnitudes can be obtained comparing the binding energy of 2 protons separated by ~ 1 fm

The intensity of the interactions dictates the particles lifetimes and their interaction cross sections.

Electromagnetism (QED)

- Between charged particles
- Vector of the interaction : the photon (γ)
- One Feynman graph for QED:

R. Feynman

An e- which emits a γ and moves back. The γ is absorbed by an other e^{-}whose direction is modified

Feynman graph

－A powerful « graphical » method to display the interaction in perturbations theory（each diagram is a term in the perturbation series）
－Each graph is equivalent to « a number»
－\rightarrow computation of the matrix elements and of the transition probabilities
\qquad

几几气几几の Vector boson of the interaction

－Horizontal axis ：the time
－Lines are particles which propagate in space－time
－The－represent the vertices «location» of the interaction（where there is quantum number conservation）

Feynman rules：
External lines：fields
（spinors，vectors，．．．）
Vertex：$\sqrt{ } \alpha$ factor in the matrix element «interaction intensity＂

Propagator：
factor $i g_{v \nu} /\left(q^{2}-m^{2}\right)$（depends also on
spin ．．．）

$$
\alpha=\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\frac{1}{137}
$$

Virtual particles

Example QED : $\mathrm{e}^{+} \mathrm{e}^{-}$symmetric collision in the rest frame

$$
\begin{aligned}
& E_{e+}+E_{e-}=E_{\gamma} \\
& \overrightarrow{p_{+}}+\overrightarrow{p_{-}}=\overrightarrow{p_{\gamma}} \\
& m_{\gamma}^{2}=2 m_{e}^{2}+2 E_{e+} E_{e-}-2 p_{+} p_{-} \cos \theta
\end{aligned}
$$

In the rest frame: $\quad \overrightarrow{p_{+}}+\overrightarrow{p_{-}}=\overrightarrow{p_{\gamma}}=\overrightarrow{0}$
$\theta=\pi \Rightarrow m_{\gamma}^{2}=2 m_{e}^{2}+2 E_{e+} E_{e_{-}}+2 p_{+} p_{-}$
incompatible with $m_{\gamma}=0$
The γ is « off-shell »

It can be interpreted as :
Violation of the energymomentum conservation law

Creation of a massive virtual photon during a «short» time
the γ can only exist virtually thanks to $\Delta E . \Delta t \approx \hbar$
2γ production going in opposite directions
\rightarrow energy-momentum conservation

The way we see the electron and the photon is modified
electron :
e-
e-
The electron emits and absorbs all the time virtual γ, it can be seen as:

=> Theoretical (α «running »), Vacuum polarization and experimental ($\mathrm{g}-2$) consequences
photon :

(g-2) : Experimental evidence of the vacuum polarisation

Gyro-magnetic ratio g

- The magnetic moment associated associated to the angular momentum of the electron

- Intrinsic magnetic momentum :

Dirac : for spin $1 ⁄ 2$ point-like particles: $g=2$

$$
\vec{\mu}=g \mu_{B} \vec{S}_{\mathrm{spin}}
$$

gyro-magnetic spin ratio

The value of g is modified by :

One defines $a=\frac{g-2}{2}=\frac{g}{2}-1=\frac{\alpha}{2 \pi}+\ldots \approx \frac{1}{800}$
$a=0.00115965241 \pm 0.00000000020$
$a=0.00115965238 \pm 0.00000000026$
theory (α^{3})

Gravitational Force

$$
F=\frac{G m_{1} m_{2}}{r^{2}} \quad \underset{m_{1}}{\stackrel{r}{\longleftrightarrow}} m_{2} \quad \begin{aligned}
& G=6.67259(85) 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{sec}^{2}} \\
& \text { Newton constant }
\end{aligned}
$$

To compare with the electromagnetic force for the hydrogen atom

$$
\begin{aligned}
& \frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}=\alpha \approx \frac{1}{137} \\
& \frac{G m_{e} m_{p}}{\hbar c}=\alpha_{\text {grav }} \approx 3.3 \times 10^{-42}
\end{aligned}
$$

The effects of gravitation are very small
at the atom scale \rightarrow neglected..

- Important effects if $\alpha_{\text {grav }} \sim 1$

$$
\frac{G m^{2}}{\hbar c} \sim 1 \Rightarrow m c^{2} \sim 10^{19} \mathrm{GeV}
$$

- For energies much lower than $10^{19} \mathrm{GeV}$ we can neglect gravitational effects
- Actually there is not satisfactory theory for gravitation

Interactions : summary

- The interactions are mediated by vector bosons interaction range $\propto 1 /$ mass
- Feynman graph = display of a matrix element of the transition in the perturbations series framework
- Virtual particles (off-shell particles during a short time)
- QED: electric charge, γ, vacuum polarisation, $\alpha \nearrow$ with energy

Strong interaction (discussed in a devoted lectures)

Weak interaction (discussed in devoted lectures)

- QCD: colour, gluons (self-interaction), $\alpha_{s} \searrow$ with energy (asymptotic freedom)
- Weak: concerns all fermions, $\mathrm{W}^{ \pm}, \mathrm{Z}^{0}$

Complements

Interaction is transported by particles

> 100 years of search and discoveries

All our knowledge is today «codified» in the Standard Model : Matter, Interaction, Unification Interaction, Unification

- The Standard Model :

- Classify the matter particles in family (fermions)
- Explain the interactions through local gauge principle symmetry (bosons)
- Allow the particle to acquire masses through the Higgs mechanism

Source: The Economist

APPENDIX I : Angular momentum and spin

Angular momentum

Classical mechanics :

$$
\vec{L}=\vec{r} \wedge \vec{p}
$$

3 components :

- can be measured with infinite precision
- can have all values

Quantum Mechanics :

same definition, with the operators R and P (notation L or \vec{L})
-The algebra of the components of $L:\left[L_{i}, L_{j}\right]=i \varepsilon_{i j k} L_{k} ; \varepsilon_{i j k}=0,+1,-1$
according to ijk. One also has: $L^{2}=L_{i}{ }^{2}+L_{j}{ }^{2}+L_{k}{ }^{2} \quad ; \quad\left[L^{2}, L_{i}\right]=0$

- 2 independent operators (usually : L^{2} et L_{z})
(2 useful quantum numbers)
-quantification :
$\cdot L^{2}: \ell(\ell+1) \hbar^{2} ; \ell$ is an integer
$\cdot L_{z}: \quad m \hbar$ with $m=-\ell,-\ell+1, \ldots,-1,0,1, \ldots$,

- Addition of 2 angular momenta :

$$
\left|j_{1}, j_{2} ; m_{1}, m_{2}\right\rangle=\sum_{J=\mid i_{1}-j_{2}}^{j_{1}+j_{2}} \sum_{M=-J}^{J}|J, M\rangle\left(U, M \mid j_{1}, j_{2} ; m_{1}, m_{2}\right)
$$

Spin

- The spin is the intrinsic kinetic momentum of a particle.
- it can be half-integer
- It determines the behavior of a given particle.
- Few examples of experimental evidences for the spin:

- Fine structure of the atoms spectral lines : each line is made of several components very close in frequency
- "Abnormal » Zeeman effect : Each spectral line is divided in a given number of equidistant lines when the atom is in an uniform magnetic field. «Anomaly»: the atoms of Z odd (ex. Hydrogen) divide into an even number of sub-level. In fact the number of levels is $2 \ell+1 \rightarrow$ proof of half integer kinetic momentum!
- The spin has no classical equivalent. Trying to explain it saying that the particle rotates on its own axis does not work.

[^0]- The spin obeys the same laws as the other kinetic momenta :
- Algebra similar as the L one
- S^{2} can have the values $s(s+1) \hbar^{2}$ (s can be half integer)
- And $\mathrm{S}_{\mathrm{z}}: m \hbar$ with $m=-s,-s+1, \ldots-1,0,1, \ldots, s-1, s$
- One can add a spin with
- An other spin $\left(S=S_{1} \oplus S_{2}\right)$
- With an total angular momentum $(J=L \oplus S)$

A particle can have any angular momentum L but its spin S is fixed

	integer spin (Bosons)		Half integer spin (Fermions)	
	spin 0	spin 1	spin $1 / 2$	$\operatorname{spin} 3 / 2$
Elementary	-	Vectors of the interactions	quarks, leptons	-
Composite	pseudo-scalar mesons (p,K..)	Vector mesons $\left(\rho, K^{*}\right)$	some baryons (octet)	some baryons (decuplet)

spin/statistics theorem (Pauli 1940)

Pauli's exclusion principle : two particles of half integer spin (fermions) cannot be simultaneously in the same quantum state

Bohr and Pauli

For 2 particles one in the state ψ_{α}, the other one in the state ψ_{β}, one can write :

$$
\psi(1,2)=\frac{1}{\sqrt{2}}\left(\psi_{\alpha}(1) \psi_{\beta}(2)+\psi_{\beta}(1) \psi_{\alpha}(2)\right) \quad \text { Symmetric (bosons) }
$$

$$
\psi(1,2)=\frac{1}{\sqrt{2}}\left(\psi_{\alpha}(1) \psi_{\beta}(2)-\psi_{\beta}(1) \psi_{\alpha}(2)\right) \quad \text { anti-symmetric (fermions) }
$$

If 2 fermions are in the same state $(\alpha=\beta)$ their wave function is $0!$ This problem does not exist for bosons which can occupy the same state (ex. supra- conductors).
This can be generalized for a larger system of particles.

Helicity

- Particle of spin \vec{S}
- Axis orientation in the momentum direction \vec{n}
- Helicity :

$$
\Lambda=\vec{n} \cdot \vec{S} \text { with } \vec{n}=\frac{\vec{p}}{|\vec{p}|} \quad \Lambda=\vec{n} \cdot \vec{\jmath} \text { because } \vec{p} \cdot \vec{L}=\vec{p} \cdot(\vec{r} \wedge \vec{p})=\overrightarrow{0}
$$

- Eigenvalues $-s \leq \lambda \leq s \quad 2 s+1$ values
- if mass=0 only 2 eigenvalues : $\pm s$

Right-handed particle

Left-handed particle

The helicity is invariant under rotation (scalar product of 2 vectors).

APPENDIX III : two body space phase

$\left.d \Gamma=\frac{1}{2 m_{a}} \sum_{\mathrm{int}}|\langle f| T| i\right\rangle\left.\right|^{2}(2 \pi)^{4} \delta^{4}\left(Q_{f}-Q_{i}\right) \prod_{k=1}^{2} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}}$
$Q_{i}=q_{a}+q_{b}$ quadrivecteur energie impulsion de l'etat intial $|i\rangle$
$Q_{i}=\sum_{k=1}^{2} q_{k}$ quadrivecteur energie impulsion de l'etat initial $|f\rangle$
\vec{p}_{k}, E_{k} : impulsion, energie de la $\mathrm{k}^{\text {ieme }}$ particule finale

$$
d \psi=\int_{4}(2 \pi)^{4} \delta^{4}\left(Q-q_{1}-q_{2}\right) \prod_{k=1}^{2} \frac{d^{3} p_{k}}{(2 \pi)^{3} 2 E_{k}}
$$

On intègre sur 4 variables à choisir parmi les 6 impulsions afin de faire disparaître la fonction δ qui représente la conservation de l'énergie-impulsion
On se place dans le référentiel du centre de masse : $Q=(\sqrt{s}, \overrightarrow{0})$

$$
d \psi=\int_{4}(2 \pi)^{4} \delta\left(\sqrt{s}-E_{1}-E_{2}\right) \delta^{3}\left(\vec{p}_{1}+\vec{p}_{2}\right) \frac{d^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}}
$$

Après intégration sur les 3 composantes de p_{2}

$$
d \psi=\frac{1}{4(2 \pi)^{2}} \int_{1} \delta\left(\sqrt{s}-E_{1}-\sqrt{p_{1}^{2}+m_{2}^{2}}\right) \frac{d^{3} p_{1}}{E_{1} \sqrt{p_{1}^{2}+m_{2}^{2}}}
$$

$$
d \psi=\frac{1}{4(2 \pi)^{2}} \int_{1} \delta\left(\sqrt{s}-E_{1}-\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}\right) \frac{\sqrt{E_{1}^{2}-m_{1}^{2}}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}} d E_{1} d \Omega_{1}
$$

Cette intégrale est de la forme $\int g(x) \delta(f(x)) d x=\frac{g\left(x_{0}\right)}{\left|f^{\prime}\left(x_{0}\right)\right|} \quad$ avec x_{0} tel que $f\left(x_{0}\right)=0$

$$
\text { avec : } f\left(E_{1}\right)=E_{1}+\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}-\sqrt{s} \quad \Rightarrow f^{\prime}\left(E_{1}\right)=1+\frac{E_{1}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}}
$$

$$
\begin{aligned}
& g\left(E_{1}\right)=\frac{\sqrt{E_{1}^{2}-m_{1}^{2}}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}} \\
& \frac{g\left(E_{1}\right)}{f^{\prime}\left(E_{1}\right)}=\frac{\sqrt{E_{1}^{2}-m_{1}^{2}}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}} \cdot \frac{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}+E_{1}}=\frac{\sqrt{E_{1}^{2}-m_{1}^{2}}}{\sqrt{E_{1}^{2}-m_{1}^{2}+m_{2}^{2}}+E_{1}}
\end{aligned}
$$

La fonction $f\left(E_{1}\right)$ s'annule pour la valeur E_{10} telle que $E_{10}=\frac{1}{2 \sqrt{s}}\left(s+m_{1}^{2}-m_{2}^{2}\right)$
E_{10} est la valeur qui correspond à l'énergie de la particule 1 dans le centre de masse

$$
\frac{g\left(E_{10}\right)}{f^{\prime}\left(E_{10}\right)}=\frac{\sqrt{E_{10}^{2}-m_{1}^{2}}}{\sqrt{E_{10}^{2}-m_{1}^{2}+m_{2}^{2}}+E_{10}}=\frac{p_{10}}{\sqrt{\mathrm{~s}}}
$$

$$
d \psi=\frac{1}{4(2 \pi)^{2}} \frac{p_{10}}{\sqrt{s}} d \Omega_{1}=\frac{1}{16 \pi^{2}} \frac{p^{*}}{\sqrt{s}} d \Omega_{1}
$$

- Product of the luminosity of a characteristic time (1 year .. , experiment lifetime ...)

$$
L_{\mathrm{int}}=\int L d t \quad c m^{-2} \quad \text { or } \operatorname{barn}^{-1}\left(\mathrm{~b}^{-1}\right)
$$

-PEP-2 example $L=310^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \quad 1$ year ($\sim 10^{7}$ seconds)

- $L_{\text {int }}=310^{40} \mathrm{~cm}^{-2}=30 \mathrm{fb}^{-1}$
- $N=\sigma L_{\text {int }}$

$$
\begin{aligned}
& 1 \mathrm{~b}=10^{-24} \mathrm{~cm}^{2} \\
& 1 \mathrm{fb}=10^{-15} \mathrm{~b} \\
& 1 \mathrm{fb}^{-1}=10^{39} \mathrm{~cm}^{-2}
\end{aligned}
$$

- production cross section of the l'Y(4s) :~1.1 nb
$\Rightarrow 3310^{6} \mathrm{Y}(4 \mathrm{~s})$ produced by year by the PEP-2 machine
$L_{\text {int }}$ takes into account the machine operation : convenient !

[^0]: e,p,n have very different characteristics (charge/ mass/interaction) but they have the same spin : $1 / 2$

