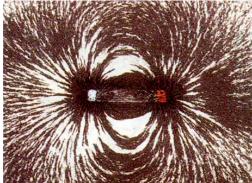
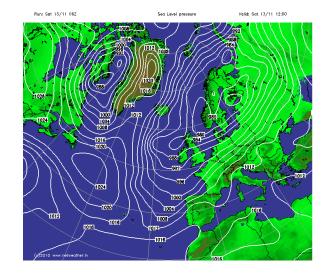


Higgs discovery at the LHC

Achille STOCCHI Marie-Hélène SCHUNE LAL-Orsay IN2P3/CNRS

The Higgs mechanism


Introduction to Standard Model


The Higgs field and the Higgs mechanism

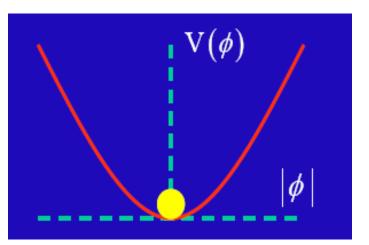
Vector field : Magnetic field, the wind velocities in the atmosphere ...

Scalar field : Atmospheric pressure

Brout-Englert-Higgs field (scalaire, complexe)

The couplings of the elementary particles with the Higgs field ightarrow mass

Let's take a scalar particle Φ :


N1// /

Scalar potential $V(\phi)$: mass term and interactions :

$$V(\phi) = \frac{1}{2} \mu^2 \phi^2 + \frac{1}{4} \lambda \phi^4$$

Minimum:
$$\frac{\partial V(\phi)}{\partial \phi} = \phi \left(\mu^2 + \lambda \phi^2 \right) = 0$$

If λ >0 and μ^2 > 0 trivial minimum : the ground state

 Φ =0 is not the minimum !

By the choice of the minimum the symmetry is broken

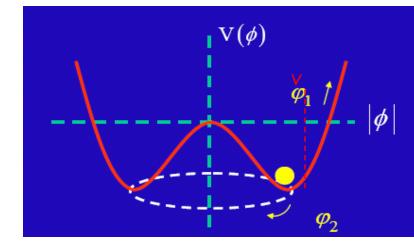
This is spontaneous symmetry breaking

Introduction to Standard

 $L=\frac{1}{2}(\partial_{\mu}\phi)^{2}-V(\phi)$

Perturbative calculations : expand around the minimum (Φ =v or Φ =-v) $\phi(x) = v + \eta(x)$

$$L = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} \mu^{2} \phi^{2} - \frac{1}{4} \lambda \phi^{4}$$


$$L' = \frac{1}{2} (\partial_{\mu} \eta)^{2} (\lambda v^{2} \eta^{2}) - \lambda v \eta^{3} - \frac{1}{4} \lambda \eta^{4} + \text{constant terms}$$

Mass term : $M = \sqrt{2\lambda v^{2}} = \sqrt{-2\mu^{2}}$

If one uses a complex scalar field

$$L = (\partial_{\mu}\phi^{+})(\partial^{\mu}\phi) - \lambda(\phi^{+}\phi)^{2} - \mu^{2}\phi^{+}\phi$$

If λ >0 and μ^2 < 0

Degenerate minima
$$\phi_1^2 + \phi_2^2 = v$$
 with $v = \sqrt{\frac{-\mu^2}{\lambda}}$

5

- $M_{\phi_1}^2 = -2\mu^2 > 0$ The Φ_1 field has a mass (just as before)
- $M_{\phi_2}^2 = 0$ No corresponding mass term for the Φ_2 field : the theory has a massless scalar : the Goldstone boson.

 $\mathbf{\Phi} = 1/\sqrt{2}(\mathbf{\Phi}_1 + \mathbf{i}\mathbf{\Phi}_2)$

In Φ_1 and Φ_2 directions the potential behaves differently : flat in $\Phi_2 \rightarrow$ massless boson

The Higgs mechanism in the Standard Model

Use a doublet of complex fields

electroweak unification + spontaneous symmetry breaking:

$$L = (D_{\mu}\phi^{+})(D^{\mu}\phi) - \lambda(\phi^{+}\phi)^{2} - \mu^{2}\phi^{+}\phi$$
$$D^{\mu}\phi = \left[\partial^{\mu} + igW^{\mu} + ig'Y_{\phi}B^{\mu}\right]\phi$$
$$\left|\left\langle 0 \left| \phi^{0} \right| 0\right\rangle\right| = \sqrt{\frac{-\mu^{2}}{2\lambda}} = \frac{v}{\sqrt{2}} \quad \text{and} \quad \left|\left\langle 0 \left| \phi^{+} \right| 0\right\rangle\right| = 0$$

spontaneous symmetry breaking : $\phi(x) = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ v + H(x) \end{bmatrix}$

The coupling to the gauge boson is obtained via the covariant derivatives (long calculation):

$$L = (D_{\mu}\phi^{\dagger})(D^{\mu}\phi) = \frac{1}{2}\partial_{\mu}H\partial^{\mu}H + \frac{g^{2}}{4}(v+H)^{2}\left[W_{\mu}^{\dagger}W^{\mu} + \frac{1}{\cos^{2}\theta_{W}}Z_{\mu}^{\dagger}Z^{\mu}\right]$$

No $A_{\mu}A^{\mu}$ term : $M_{\gamma}=0$

Massive weak gauge bosons :

$$M_{W} = \frac{1}{2}Vg$$
$$M_{Z} = \frac{1}{2}\frac{Vg}{\cos\theta_{W}}$$

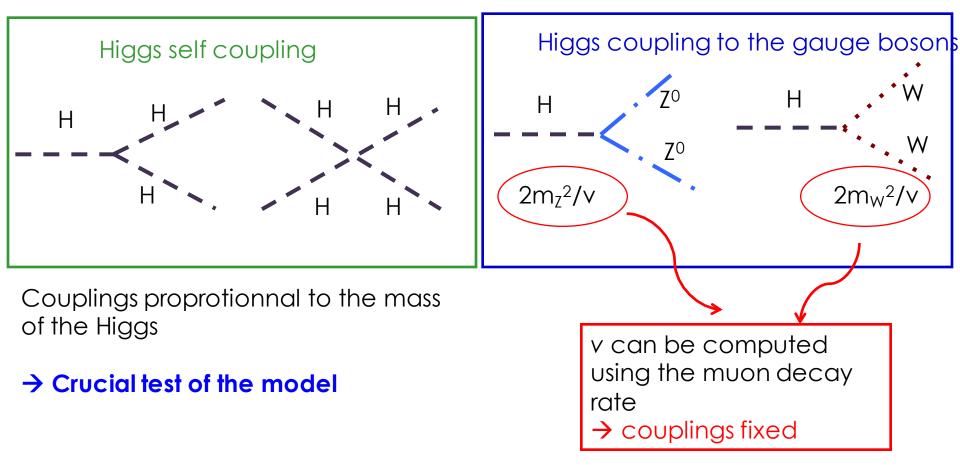
1

v is not known it can be computed using the muon decay rate

$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} = \frac{1}{2v^2} \to v \sim 246$$

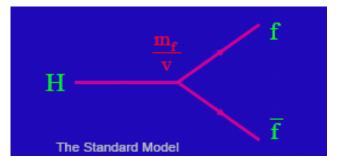
This is what we wanted to obtain !

Introduction to Standard Model


GeV

The Higgs boson :

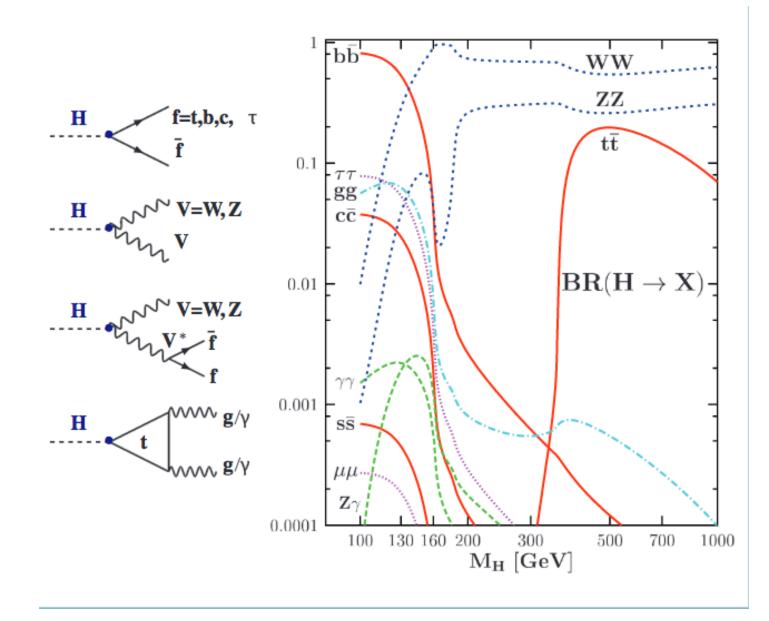
As shown before $M_{\rm H} = \sqrt{-2\mu^2}$ it is a free parameter


If one writes the full lagrangian one sees Higgs self-coupling and Higgs couplings to the gauge bosons

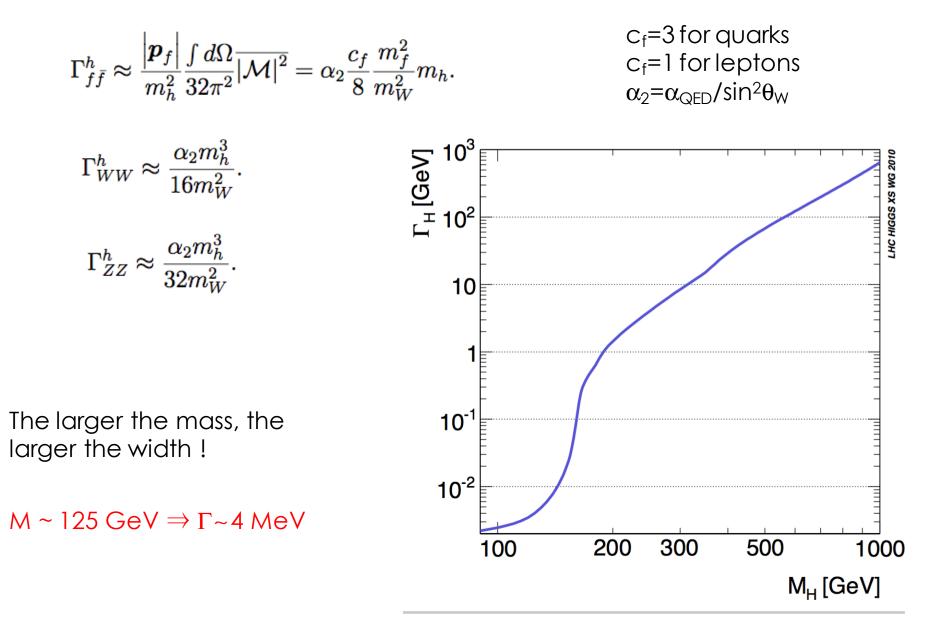
These couplings are proportional to the masses

The Higgs and the fermions :

The fermions masses are free parameters :


The couplings are fixed : m_f/v

Experimental consequence : the Higgs boson will decay preferentially to heavy particles



- Complex doublet scalar field : the Higgs field : 3 components absorbed : masses to the W and Z.
- One remaining component : the Higgs boson
- Higgs field : it is the interaction of the elementary particles with the Higgs field which gives them masses

Main Higgs possible decays depend on the Higgs mass

One has

LABORATOIRE EUROPÉEN POUR LA PHYSIQUE DES PARTICULES CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS

CERN/LHCC 92-LHCC/I 1 October 1992

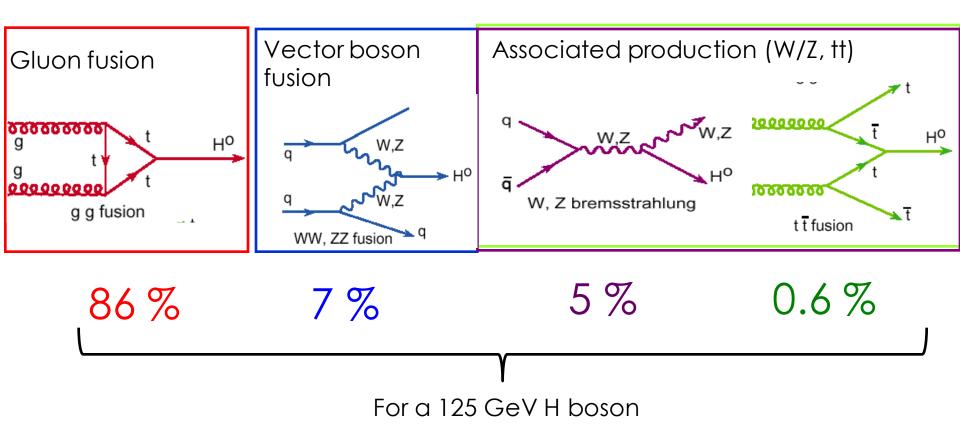
CMS

The Compact Muon Solenoid

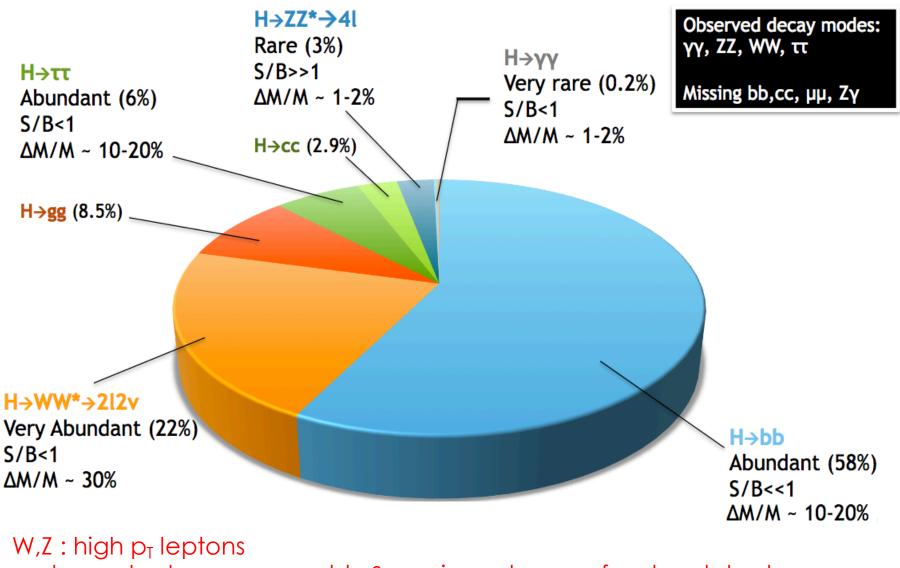
Pixel Tracker ECAL HCAL Muons Solenoid coil

Pixels & Tracker

- Pixels (100x150 μm²) $\sim 1 \text{ m}^2 66 \text{M}$ channels
- Silicon Microstrips ~ 210 m² 9.6M channels

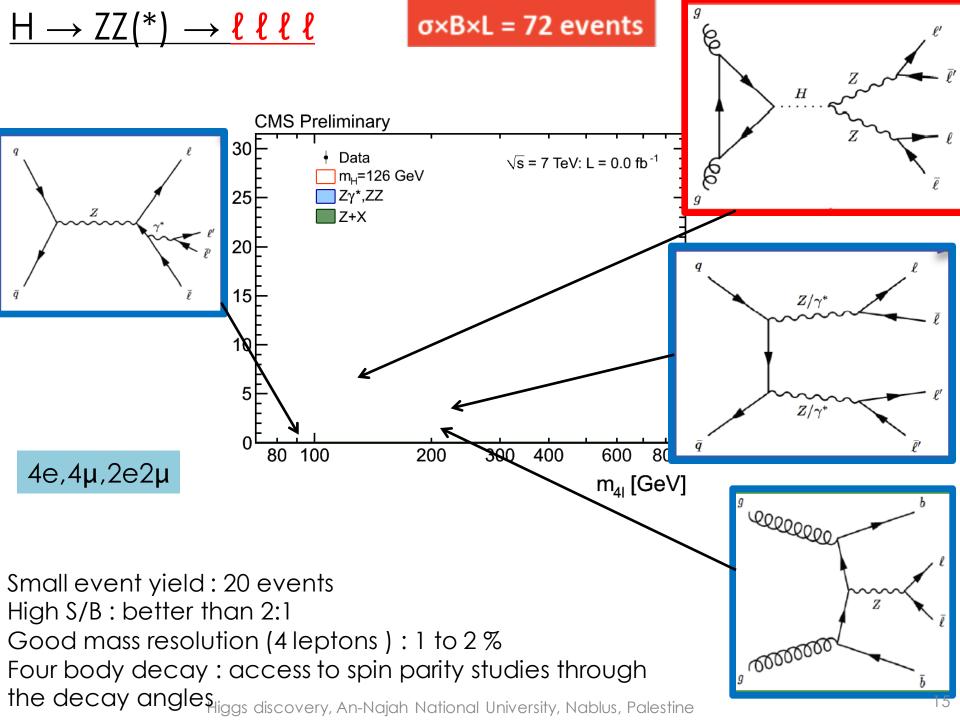

for a General-Purpose pp Experiment at the

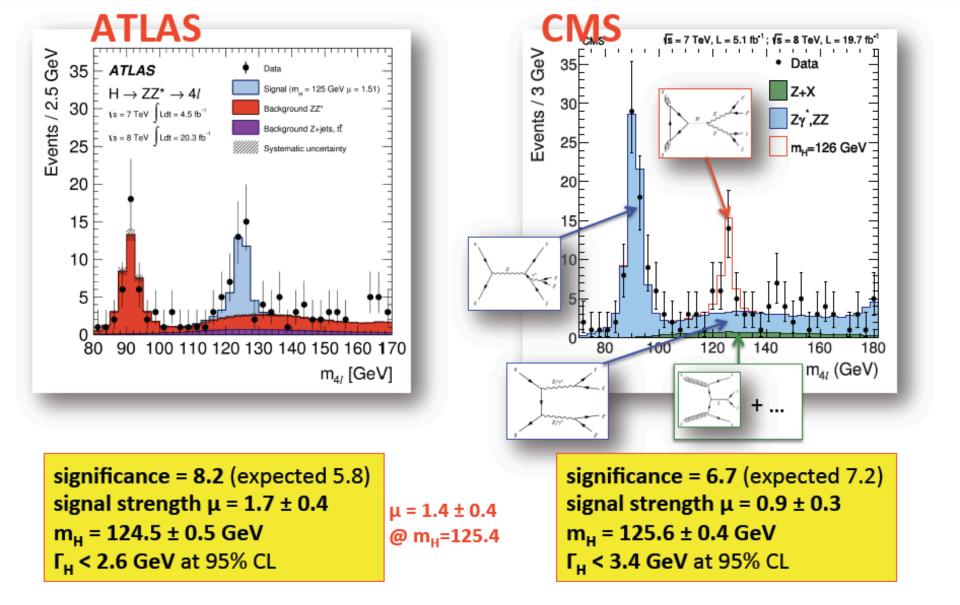
Large Hadron Collider at CERN


Drift Tubes (DT) and Resistive Plate Chambers (RPC)

Production (at the LHC)

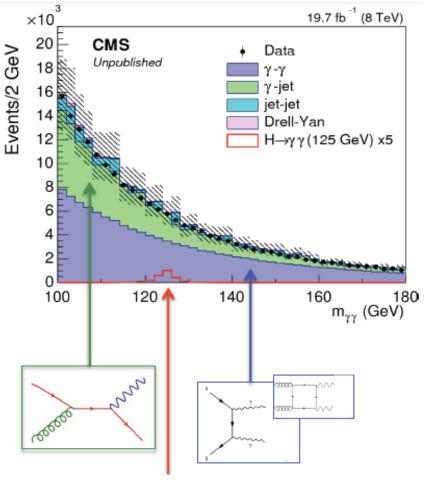
In the proton : light quarks and gluons \rightarrow small/no direct coupling to H \rightarrow First produce heavy particles !



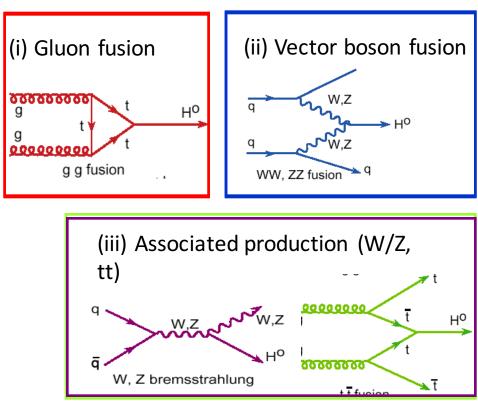

Decay (at the LHC)

 τ : low p_T leptons

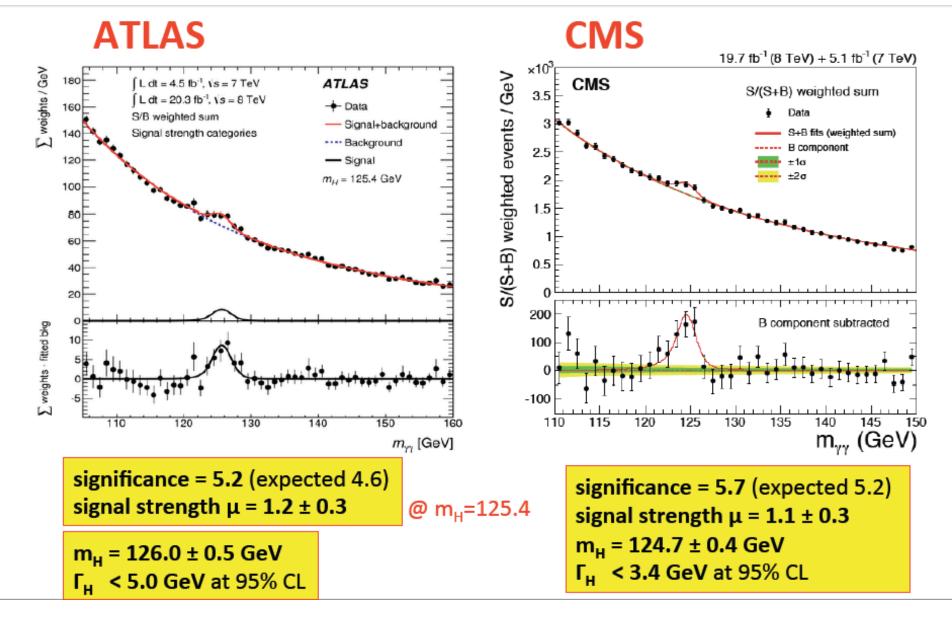
bb & $\tau\tau$: importance of vertex detectors

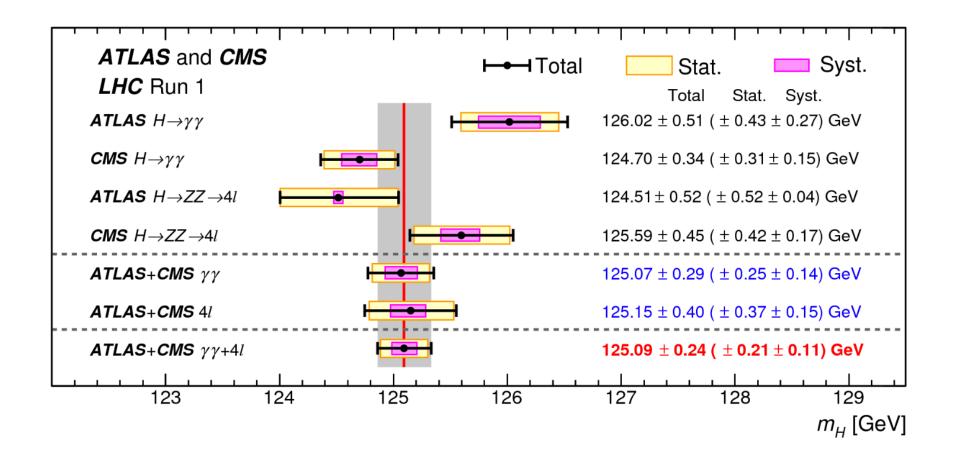

Extremely clear observation of the Higgs boson Compatible with expectations (signal strength) from the SM

σ×B×L = 1.3K events

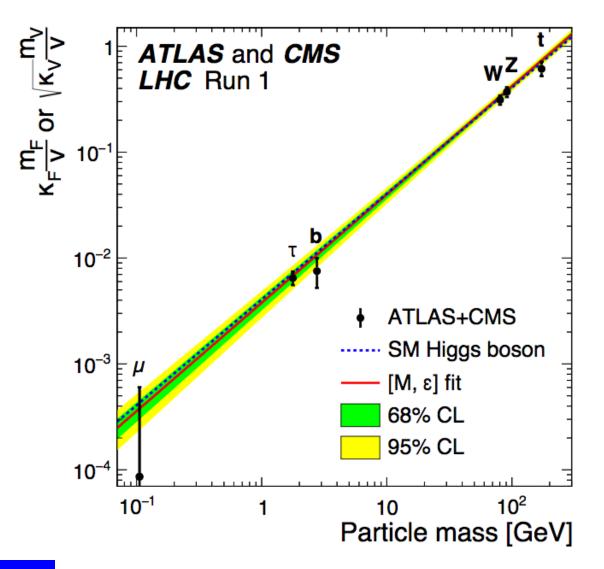

Н→үү

Only two high p_T photons


Analysis performed according to the Higgs production mode (and thus the rest of the event



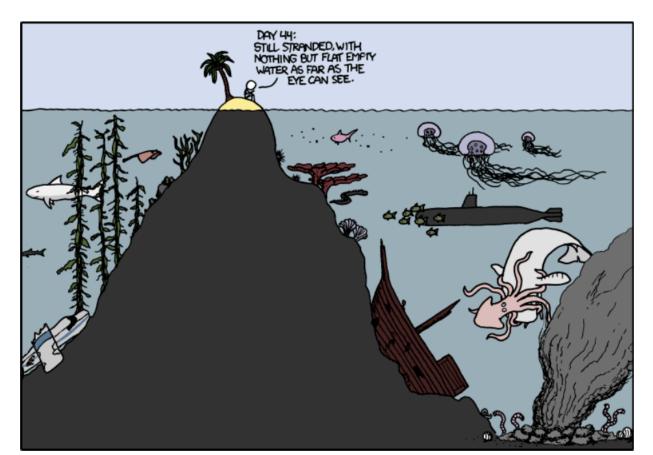
Large event yield : 470 events Low S/B : 1:20 Good mass resolution : 1 to 2 %


Clear observation of the Higgs boson despite the larger background level Compatible with expectations (signal strength) from the SM

The H \rightarrow ZZ \rightarrow 4I and the H \rightarrow YY channels allow to measure the boson mass

Precision of the order of 0.2 %

SM : couplings proportionnal to the masses of the particles


No big surprise

Run2 : in 2015 LHC restarted with a centre of mass energy of 13 TeV

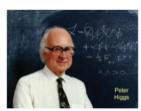
But also much larger integrated luminosities

- \rightarrow a lot of Higgs events
- → new decay modes
- \rightarrow studies of its properties.

Up to now it looks like a Standard Model Higgs

Summary

- What has been discovered at the LHC is the Higgs boson (a particle) which is the experimental proof of the existence of the Higgs field
- All Higgs boson measured properties are consistent with the SM expectations :
 - spin and parity (0⁺) •
 - the mass, NOT predicted by the SM is measured with a precision of 0.2 % •
 - the couplings agree with those expected for a SM Higgs boson •



Robert Brout 1928-2011

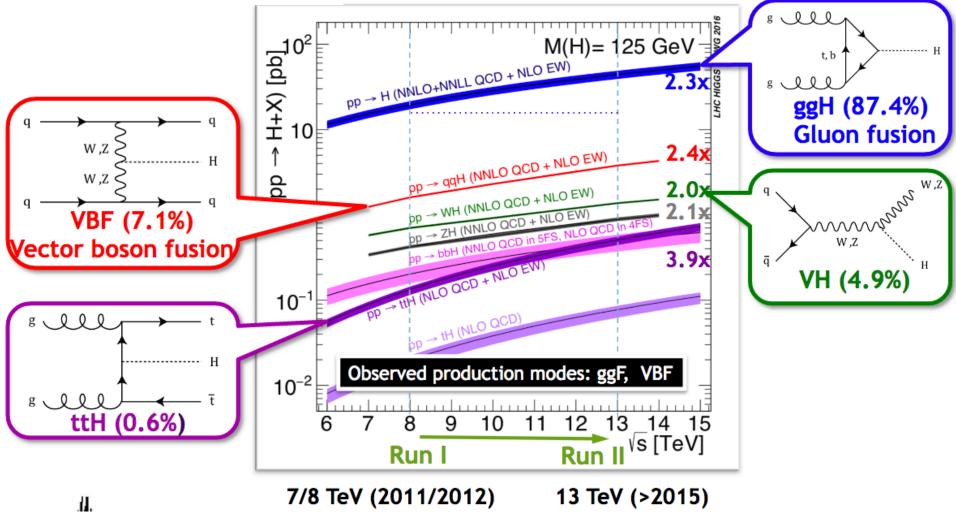
François Englert 1932-

Peter Higgs 1929-

Higgs discovery, An-Najah Nationa

Back up slides

Total number of inelastic pp-collisions produced in Run I: 1.5 × 10 ¹⁵											
Total produced	Higgs bo	560,	560,000								
		g t H ^O g t t H ^O g a fusion	q WZ WW, ZZ fusion q	q Q Q W, Z bremsstr	H ₀	t T fusion					
m _H =125 GeV	(l=e/μ)	ggF (86%)	VBF (7%)	VH (5%) bbH (0.9	9%) ttH (0.6%)					
$H \rightarrow ZZ \rightarrow 4I$	0.013%	72									
Н → үү	0.23%		1,3	00							
$H \rightarrow WW \rightarrow IvIv$	1.1%	6,100 all avant counts are before									
H→π	6.3%		35,0		event counts are <u>before</u> : detector acceptance						
H → bb	58%	X 270,000	42,0	00	• reconstruct	tion efficiency					
H → μμ	0.022%		12	event selec	event selection efficiency						
$H \rightarrow Z\gamma \rightarrow 2I\gamma$	0.010%	56									
$H \rightarrow J/ψγ \rightarrow μμ γ$	1.7×10 ⁻⁷	0.1									
invisible	0.11%	X 590 (too small S/B at LHC, unless there is BSM H→inv)									
all others	37%	200,000 (deemed not feasible at LHC) An-Naiah National University, Nablus, Palestine									

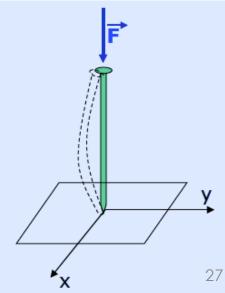

Remember the number of Higgs bosons produced for Run 1?

	m _H =125 GeV	ggF (86%)	ggF (86%) VBF (7%) VH (5%			bbH (0.9%)	ttH (0.6%)			
✓	$H \rightarrow ZZ \rightarrow 4I$	0.013%			72					
✓	Н → үү	0.23%			1,300					
✓	$H \rightarrow WW \rightarrow lvlv$	1.1%			6,100	یم الد	ent counts ar	e hefore:		
✓	H→π	6.3%	35,000				 all event counts are <u>before</u>: detector acceptance 			
?	H → bb	58%	X 270,000		42,000		construction			
-	H → μμ	0.022%			120	• e\	vent selection	efficiency		
-	$H \rightarrow Z \gamma \rightarrow 2 I \gamma$	0.010%			56					
-	$H \rightarrow J/\psi\gamma \rightarrow \mu\mu\gamma$	1.7×10 ⁻⁷			0.1					

Production (at the LHC)

In the proton : light quarks and gluons \rightarrow small/no direct coupling to H \rightarrow First produce heavy particles !

For a 125 GeV H boson :


The Lagrangians L and L' are completely equivalent

The transformation $\phi(x) = v + \eta(x)$ does not change the physics

If we were able to solve exactly *L* and *L*' we would get the same results... but we cannot, so we use perturbations theory and calculate the fluctuations around the minimum energy

If we use *L* in perturbations theory the series don't converge (Φ =0 is unstable) The correct way is to use *L*' to expand in **n** around the stable minimum Φ =v. The scalar particle described by *L*' has a mass.

We call this way the mass is generated (in fact revealed) "spontaneous symmetry breaking"

Introduction to Standard Model

The Higgs mechanism in the Standard Model

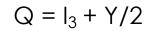
We have seen that the spontaneous symmetry breaking (performed adding a well chosen scalar field) can « modify » the mass content of the Lagrangian

Which scalar field to add in the framework of the electroweak symmetry ?

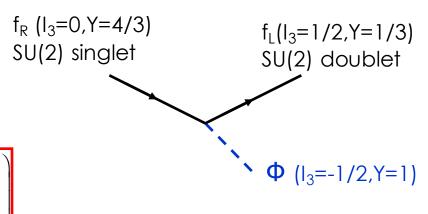
Mass term for fermions:

 $-m_f \overline{f} f = -m (\overline{f_L} f_R + \overline{f_R} f_L)$

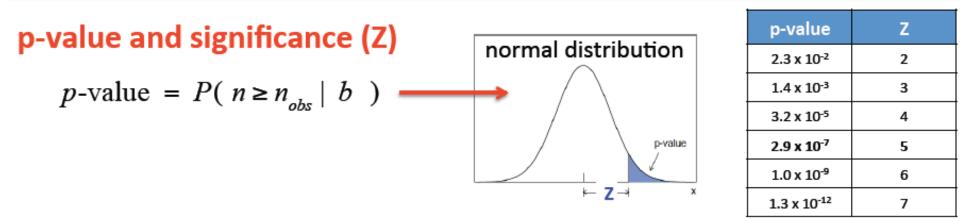
Does not conserve I_3 nor Y (not gauge invariant)


A $f_R f_L \Phi$ coupling is gauge invariant if $I(\Phi)=1/2$

→ needs a SU(2) doublet $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{vmatrix} \frac{1}{\sqrt{2}}(\phi_1 + i\phi_2) \\ \frac{1}{\sqrt{2}}(\phi_2 + i\phi_3) \end{vmatrix}$

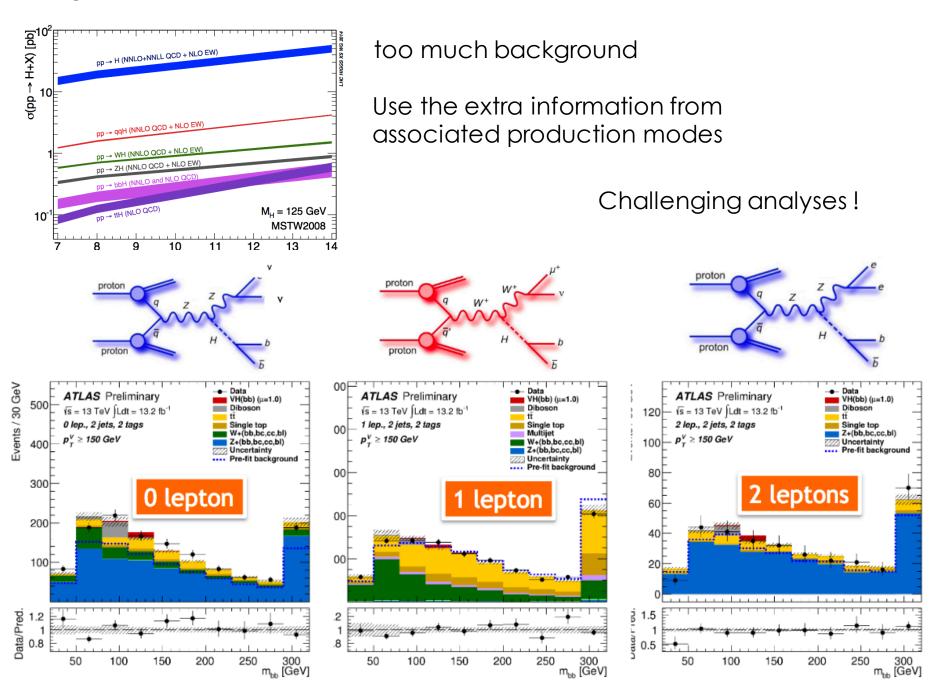

 $Q=I_3+Y/2$ so the charge are +1 and 0 in the doublet

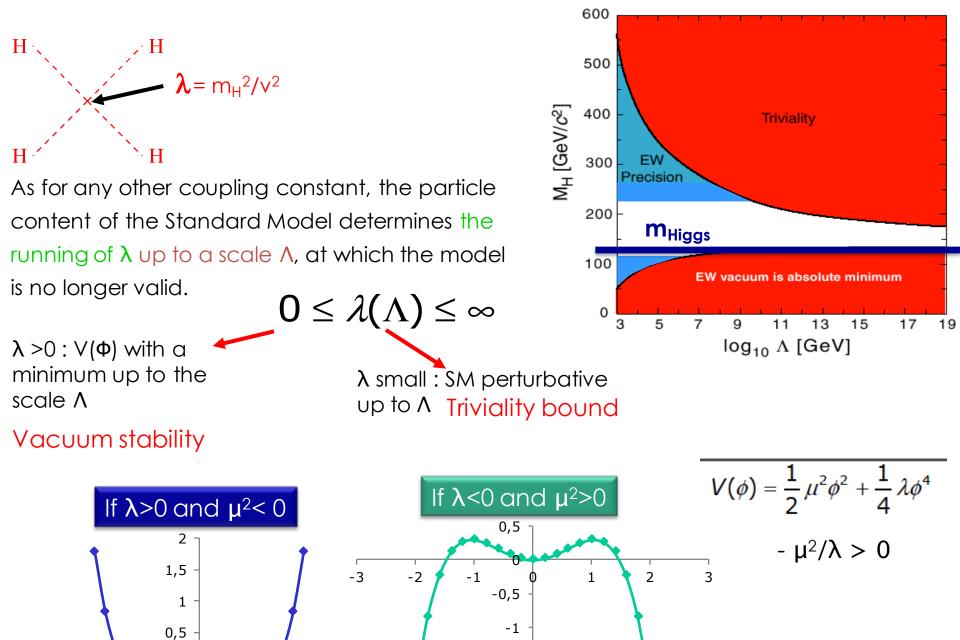
Any choice which breaks a symmetry will generate mass for the associated boson.


We want the photon to remain massless : elm should be conserved Introduction to Standard Model

Let's take the up case $:Q_f=2/3$

How to quantify the presence (or the absence) of a signal ?




signal strength (μ) – common scale factor for signal event yields

$$n_{\text{expected}} = \mu \cdot \left[\sigma_{\text{SM H}} \cdot B(H_{\text{SM}} \rightarrow xx) \cdot L \cdot \varepsilon \right] + n_{\text{background}}$$

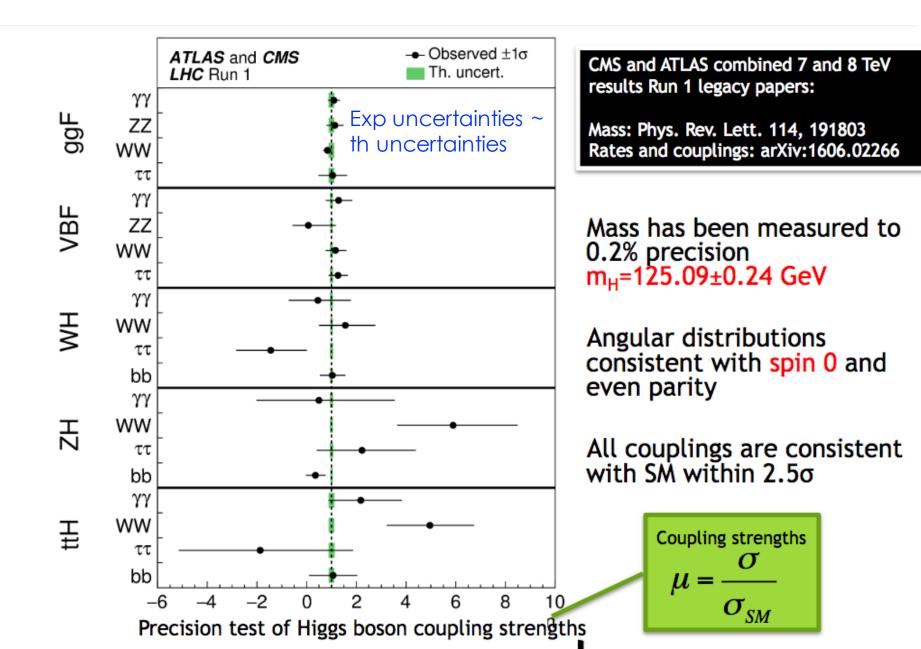
95% CL limits on signal strength (in absence of a significant excess): μ is excluded at 95% CL, if : $\frac{P(n \le n_{obs} \mid b + \mu \cdot s)}{P(n \le n_{obs} \mid b)} < 0.05$

Enough events to start to search for other modes : $H \rightarrow bb$

-1,5

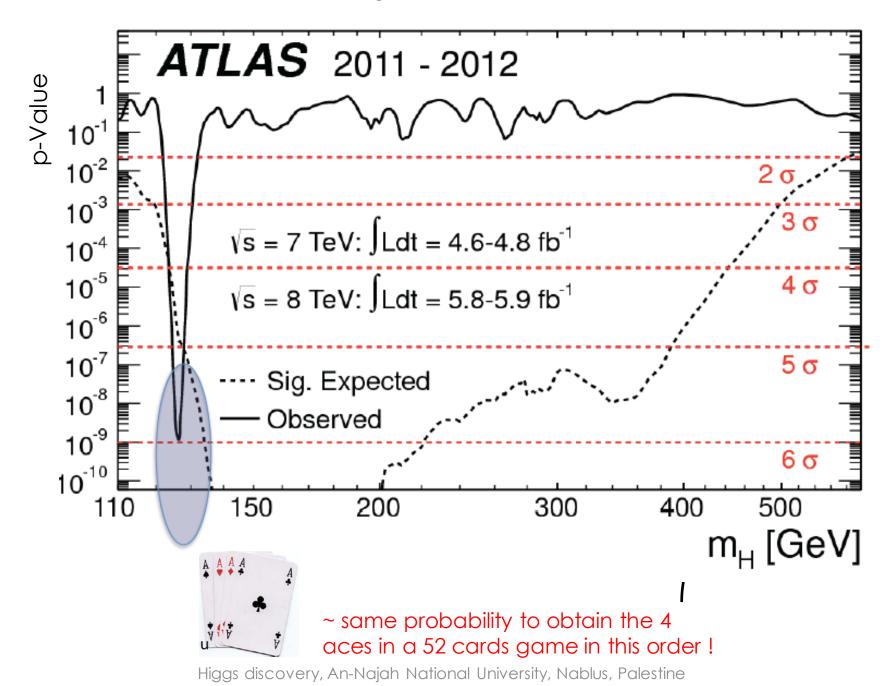
-2 -3 Higgs discovery, An-Najah National University, Nablus, Palestine

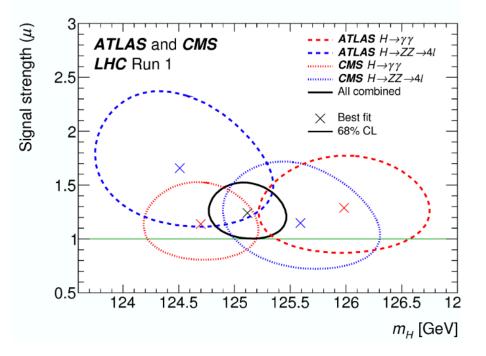
2


3

-2

-0,5


-3


31

.

p-Value ... already some time ago !

Computation of $\Gamma(H \rightarrow bb)$

$$\left[\left|\overline{\mathcal{M}}\right|^{2} = \sum_{s_{1}, s_{2}} \left[\left|\mathcal{M}\mathcal{M}\right|^{4}\right]$$

$$= i \mathcal{M} = \overline{u} \left(P_{A}\right) \frac{w_{b}}{2M_{W}} g_{W} \sigma \left(P_{2}\right)$$

$$\left[\left|\mathcal{M}\mathcal{M}\right|^{4}\right] = \frac{w_{b}^{2} g_{W}^{2}}{4M_{W}^{2}} \overline{u} \left(P_{A}\right) \sigma \left(P_{2}\right) \overline{\sigma} \left(P_{2}\right) u \left(P_{A}\right)}{\left(I_{A}u\right) \left(I_{A}u\right) \left(I_{A}u\right) \left(I_{A}u\right)}\right)$$

$$= \frac{mmber}{1}$$

$$Tr \left(\overline{u} \left(P_{A}\right) \sigma \left(P_{2}\right) \overline{\sigma} \left(P_{2}\right) u \left(P_{A}\right)\right)^{2} \overline{u} \left(P_{A}\right) \nabla \left(P_{2}\right) \overline{\sigma} \left(P_{2}\right) u \left(P_{A}\right)$$

$$= \frac{m_{b}^{2} g_{W}^{2}}{4M_{W}^{2}} Tr \left(\frac{\sum}{s_{1} s_{A}} \left(u(P_{A})\overline{u} \left(P_{A}\right)\overline{\nu} \left(P_{2}\right)\right)$$

$$= \frac{w_{b}^{2} g_{W}^{2}}{4M_{W}^{2}} Tr \left[\frac{\sum}{s_{1} s_{A}} \left(u(P_{A})\overline{u} \left(P_{A}\right)\overline{\nu} \left(P_{2}\right)\right)$$

$$= \frac{w_{b}^{2} g_{W}^{2}}{4M_{W}^{2}} Tr \left[\left(\mathcal{P}_{A} + w_{b}^{4}\right) \left(\mathcal{P}_{A} - w_{b}^{4}\right)\right]$$

$$|\nabla G|^{2} = \frac{m_{b}^{2} g_{w}^{2}}{4 M_{w}^{2}} Tr \left[\frac{\gamma_{1} \varphi_{2} + \omega_{b}^{2} M_{1} + \omega_{b} (\varphi_{1} - \varphi_{2}) \right]$$

$$Tr \left(odd mumber of \delta matrices \right) = 0$$

$$|\nabla G|^{2} = \frac{m_{b}^{2} g_{w}^{2}}{4 M_{w}^{2}} \left[4 P_{1} P_{2} - 4 m b^{2} \right]$$

$$P_{1} \cdot P_{2} = \left(\frac{m_{h}t^{2}}{P_{3}} \right) \cdot \left(\frac{m_{H}/2}{-P_{1}} \right)$$

$$= \frac{m_{H}^{2}}{4} + \frac{\varphi^{2}}{P_{3}} = \frac{M_{h}^{2}}{-P_{1}^{2}} + \frac{M_{h}^{2}}{-P_{1}^{2}}$$

$$P_{1} \cdot P_{2} = \frac{M_{h}^{2}}{2} - m_{b}^{2}$$


$$|\nabla G|^{2} = \frac{m_{b}^{2} g_{w}^{2}}{4 M_{w}^{2}} \left[2 M_{H}^{2} - 4 8 m_{b}^{2} \right]$$

$$\left[|\nabla G|^{2} = \frac{m_{b}^{2} g_{w}^{2}}{2 M_{w}^{2}} \left[M_{H}^{2} - 4 m_{b}^{2} \right]$$

$$\Gamma = \frac{1}{16 \pi M_{H}^{2}} \left(M_{H}^{2} - 4m_{b}^{2} \right)^{\frac{1}{2}} \times \frac{m_{b}^{2} g_{w}^{2}}{2 M_{w}^{2}} \left(M_{H}^{2} - 4m_{b}^{2} \right)^{\frac{1}{2}}$$

$$= \frac{1}{32 \pi M_{w}^{2}} \times \frac{m_{b}^{2} g_{w}^{2}}{M_{H}^{2}} \times \left(M_{H}^{2} - 4m_{b}^{2} \right)^{\frac{3}{2}}$$

$$= \frac{1}{32 \pi M_{w}^{2}} \times \frac{m_{b}^{2} g_{w}^{2}}{M_{w}^{2}} \times \frac{M_{H}}{M_{H}} \times \left(1 - \frac{4m_{b}^{2}}{M_{H}^{2}} \right)^{\frac{3}{2}}$$

